




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
31.4 空间向量的正交分解及其坐标表示,1平面向量基本定理的内容是:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使 .不共面的向量e1,e2叫做这一平面内所有向量的一组 2在平面内,把一个向量分解成两个互相垂直的向量,叫做把向量 ,a1e12e2,基底,正交分解,7,4,1空间向量基本定理 定理:如果三个向量a,b,c ,那么对于空间任一向量p,存在有序实数组x,y,z,使得p .其中a,b,c叫做空间的一个基底, 都叫做基向量,不共面,xaybzc,a,b,c,2空间向量的正交分解及其坐标表示,两两垂直,公共点,平移,起点,xe1ye2ze3,p,(x,y,z),1已知a,b,c是不共面的三个向量,则能构成一个基底的一组向量是( ) A2a,ab,a2b B2b,ba,b2a Ca,2b,bc Dc,ac,ac,答案: C,答案: C,答案: (1,1,1) (1,0,1),以下四个命题中正确的是( ) A空间的任何一个向量都可用三个给定向量表示 B若a,b,c为空间的一个基底,则a,b,c全不是零向量 C若向量ab,则a,b与任何一个向量都不能构成空间的一个基底 D任何三个不共线的向量都可构成空间的一个基底,根据空间基底的定义逐个选项判断 解题过程 答案: B,题后感悟 (1)空间中任意三个不共面的向量都可以作为空间向量的一个基底; (2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是0; (3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念,1.如果向量a,b与任何向量都不能构成空间的一个基底,则( ) Aa与b共线 Ba与b同向 Ca与b反向 Da与b共面 解析: 由空间向量基本定理可知只有不共线的两向量才可以做基底,B,C都是A的一种情况,空间中任两个向量都是共面的故D错 答案: A,题后感悟 判断给出的某一向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或是一些常见的几何图形帮助我们进行判断,2.设xab,ybc,zca,且a,b,c是空间的一个基底,给出下列向量组: a,b,x;a,b,y;x,y,z;a,x,y;x,y,abc 其中可以作为空间基底的向量组有( ) A1个 B2个 C3个 D4个,答案: C,由题目可获取以下主要信息: a,b,c是一个基底,空间四边形OABC中,G、H分别是ABC、OBC的重心 解答本题可利用重心的性质,再结合图形进而求得结果,1对基底的理解 (1)空间任意三个不共面的向量都可构成空间的一个基底基底选定后,空间的所有向量均可由基底惟一表示 (2)由于0与任意一个非零向量共线,与任意两个非零向量共面,所以若三个向量不共面,就说明它们都不是0. (3)空间的一个基底是指一个向量组,是由三个不共面的空间向量构成;一个基向量是指基底中的某个向量,二者是相关联的不同概念,2怎样正确理解空间向量基本定理? (1)空间向量基本定理表明,用空间三个不共面已知向量组a,b,c可以线性表示出空间任意一个向量,而且表示的结果是惟一的 (2)空间中的基底是不惟一的,空间中任意三个不共面向量均可作为空间向量的基底,3如何理解空间向量与平面向量的正交分解? 空间向量的正交分解与平面向量的正交分解类似,都需要事先提供一组基底,空间向量表示为pxaybzc的形式,平面向量表示为pxayb的形式 4特殊向量的坐标表示 (1)当向量a平行于x轴时,纵坐标,竖坐标都为0,即a(x,0,0); (2)当向量a平行于y轴时,横坐标,竖坐标都为0,即a(0,y,0);,(3)当向量a平行于z轴时,横坐标,纵坐标都为0,即a(0,0,z); (4)当向量a平行于xOy平面时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年焊工考试考前冲刺练习(轻巧夺冠)附答案详解
- 2024全国统考教师资格考试《教育教学知识与能力(小学)》全真模拟模拟题及参考答案详解【基础题】
- 2024自考专业(计算机信息管理)试题预测试卷【有一套】附答案详解
- 荔枝承包合同(标准版)
- 按揭车购买合同(标准版)
- 2023年度计算机四级练习题附参考答案详解【满分必刷】
- 养殖追溯系统用户使用手册-养殖企业
- 2025年云南大理祥云县祥城镇人民政府公益性岗位人员招聘笔试高频难、易错点备考题库及答案详解1套
- 2025年教育精准扶贫政策实施过程中的教育资源共享报告
- 2025年电商平台大数据分析在电商行业战略合作伙伴关系中的应用与策略报告
- 个人黄金抵押合同范本
- 中试基地建设可行性研究报告
- DBJ43-T302-2025《住宅工程质量常见问题防治技术标准》
- 社会工作行政(第三版)课件全套 时立荣 第1-11章 社会服务机构- 社会工作行政的挑战、变革与数字化发展
- 《走近科学家》课件
- 《基础护理学(第七版)》考前强化模拟练习试题库500题(含答案)
- 小学数学与科学素养的融合教育
- 4.3 海-气相互作用课件【知识精研】高二上学期地理鲁教版(2019)选择性必修1
- 苏科版九年级上册数学第一次月考试卷附答案
- 全套55讲-鱼C论坛小甲鱼Python课后题-20211129034856
- 浙江省温州市“摇篮杯”2022-2023学年高一下学期化学竞赛试卷 含解析
评论
0/150
提交评论