




已阅读5页,还剩83页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课程标准 1不等式 通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景 2一元二次不等式 经历从实际情境中抽象出一元二次不等式模型的过程 通过函数图象了解一元二次不等式与相应函数、方程的联系,会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图 3二元一次不等式组与简单线性规划问题 从实际情境中抽象出二元一次不等式组 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决,命题趋势 1不等式的性质是主要考查点之一,常常与指数函数、对数函数、充要条件等联系起来考查,主要是选择与填空题常见考查方式: 依据给定的条件,利用不等式的性质,判断不等式或有关的结论是否成立; 利用不等式的性质与实数的性质、函数的性质相结合,比较数的大小; 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充要条件;,解不等式中的同解变形; 证明不等式中的等价变形 2解不等式的试题常以填空题和解答题的形式出现,含字母参数的不等式较多,此时需要对字母参数进行分类讨论; 3证明不等式是考查的重点,经常与一次函数、二次函数、对数函数、导数等知识相结合近几年在函数、向量、数列、解析几何各种知识网络的交汇处命题,重点考查不等式知识,试题的立意高、难度大、综合性强,近两年高考命题难度有下降的趋势;,4应用题是高考命题的热点,而且应用问题多数与不等式相关,需要根据题意,建立不等关系,设法求解;或者用均值不等式、函数单调性求出最值等,备考指南 (1)要加强对本章一些常用思想方法的复习等价转化的思想:解不等式的过程实质上就是利用不等式的性质进行等价转化的过程许多数学问题要依据题设与结论的结构特点、内在联系选择适当的解决方案,最终归结为不等式的求解或证明分类讨论思想:对含有参数的不等式问题,一般要对参数进行分类讨论,在复习时,应引导学生学会分析引起分类讨论的原因,合理地分类,做到不重不漏函数与方程思想:不等式、函数与方程三者密不可分、相互联系、相互转化,如求参数的取值范围问题,函数与方程思想是解决这类问题的重要思想方法,(2)在复习时应强化不等式的应用,提高应用意识要总结不等式的应用规律,以便提高解决问题的能力如在实际问题中,有构造不等式求解或构造函数求最值等方法,求最值时要注意等号成立的条件 (3)加强与三角、数列、平面向量、解析几何、导数交汇的训练,重点难点 重点:实数运算的性质及实数的三歧性 不等式的性质 一元二次不等式的解法 难点:不等式性质的条件与不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年德州平原县公开招聘省属公费师范毕业生(37名)模拟试卷完整答案详解
- 2025年聊城科技职业学院(筹)公开招聘工作人员(60人)模拟试卷及答案详解1套
- 衡水市人民医院儿童语言发育迟缓治疗考核
- 天津市人民医院造口护理技能考核
- 邢台市中医院病案复印服务考核
- 秦皇岛市中医院伪差识别与处理技能考核
- 2025广东省能源集团西北(甘肃)有限公司招聘18人模拟试卷及参考答案详解
- 邯郸市人民医院儿科急救设备使用考核
- 衡水市中医院循证医学在全科实践中的应用考核
- 石家庄市中医院临床路径管理与变异分析试题
- AI赋能职业教育传媒专业人才培养的实践路径探索
- 年产3万吨生物基PTT聚合项目环评资料环境影响
- 中药煎药室设备维护及操作流程
- 鸡蛋分拣培训课件
- 2023年北京市中考真题英语试卷及答案
- 2024年长期照护师职业技能竞赛理论考试题库(含答案)
- 人教版道德与法治六上9 知法守法 依法维权 (课件)
- 桂林旅游学院新生入馆教育学习通超星期末考试答案章节答案2024年
- GB/T 19077-2024粒度分析激光衍射法
- 下肢静脉血栓的预防-踝泵运动指导课件
- 手机租赁合同模板
评论
0/150
提交评论