




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.相关性的判定定理,定理3:在一个向量组中,若有一个部分向量组线性相关, 则整个向量组也必定线性相关。,推论:一个线性无关的向量组的任何非空的部分向量组都 线性无关。,解:,解:,证明定理4.,写成分量形式为,(j=1,2, ,n),对A作初等变换,考虑A的r+1阶子式,按向量形式写,上式为:,0,推论1:当mn时,m个n维向量线性相关。,推论2:任意 m 个 n 维向量线性无关的充要条件是由它们 构成的矩阵A= 的秩r(A)=m。,推论3:任意 n 个 n 维向量线性无关的充要条件是由它们 构 成的方阵 A的行列式不等于零。或r(A)=n.,推论4:任意 n 个 n 维向量线性相关的充要条件是由它们 构 成的方阵 A的行列式等于零。或r(A)n.,定理5:若 m 个 r 维向量 线性无关,则对应的 m 个r+1 维向量 也线性无关。,用语言叙述为: 线性无关的向量,添加分量后仍旧线性无关。,推论:r 维线性无关的向量,添加 n-r 个相应分量组成的n 维向量仍旧线性无关。,证明:,Ex,含有零向量的向量组必线性相关,相关性的判定-利用定义方法,(1) 设 k1a1+ kmam=0,得到一向量方程,(2) 将向量方程转化为关于 k1, km的方程组,并求解,(3) 根据解的情况判断向量组的线性相关性: k1= km=0, 线性无关; 否则, 线性相关,向量组的极大无关组,或,极大无关组的含义有两层:1无关性;2.极大性.,1.线性无关向量组的极大无关组就是其本身;,2.向量组与其极大无关组等价;,3.同一个向量组的极大无关组不惟一,但它们之间是 等价的.,注:,例:求向量组的极大无关组.,一个向量组只要含有非零向量,则一定有 极大线性无关组,极大线性无关组一般不唯一,但是它们所含 向量个数是否相等,极大无关组的性质,定理1:设有两个n维向量组,若向量组(I )线性无关,且可由向量组(II )线性表 示,则r s.,证:设,推论2:任意两个线性无关的等价向量组所含向量的个 数相等。,定理2:一个向量组的任意两个极大无关组所含向量的个 数相等。,注:,(1)线性无关的向量组的秩=向量的个数。,(2)向量组线性无关秩=向量个数。,定理3:,r(0)=0,推论:等价的向量组有相同的秩。,必须注意:有相同秩的两个向量组不一定等价。,= n,例2:,你能举一个 反例吗?,上面的结论需要记住,并应用,如果 线性无关, 则下列向量组线性无关的为,作用:利用向量组的等价性(向量组的秩)讨论相关性,定理4:向量组的秩与该向量组所构成的矩阵的秩相等。,行秩:矩阵行向量组的秩;列秩:矩阵列向量组的秩。,推论:矩阵的行秩与列秩相等。,这实际上给出了一个求向量组秩的方法:先将向量组构成一个矩 阵,然后求矩阵的秩,这个秩就是向量组的秩。,例1:求向量组的秩。,解:,向量组的秩的求法,极大无关组的求法,逐个考察法,列摆行变换法。,例2:求向量组的秩及极大无关组。,列摆行变换将矩阵化为梯形阵后,秩即求出来了。这时,只要在 同一高度上取一个向量,即可得到极大无关组。,如上例,,求秩及一个极大无关组。,矛 盾,反例:,但,行摆行变换不行!,我们已经看到:用矩阵可以解决向量组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货运司机健康保险与福利合同
- 淘宝店铺品牌合作数据分析与效果评估合同
- 通信行业大数据分析师招聘与项目实施合同
- 影视作品网络播放权独家授权与推广合同
- 社交电商用户增长策略执行合同书
- 夫妻忠诚协议及婚姻生活品质保障合同
- 智能制造领军人才首席工程师聘用合同(含创新成果分享)
- 新能源汽车充电站运营管理及市场拓展合同
- 草原牧场放牧权委托经营与牧区农业产业结构调整合作合同
- 下水道整修合同范例
- 部编人教版五年级语文下册第18课《威尼斯的小艇》精美课件
- 消防(电动车)火灾安全知识课件
- VSM(价值流图中文)课件
- 上海交通大学医学院附属仁济医院-日间手术管理信息化实践与发展
- 有源、无源滤波器实验报告
- 供应室手工清洗操作流程课件
- 核电站入厂安全培训课件
- 节日主题班会 《感恩母亲节》教学课件
- 新加坡sm214th面经44绯的同学
- 全国第七届中小学音乐优质课比赛教学设计跳圆舞曲的小猫
- 围术期过敏反应诊治的专家共识(全文)
评论
0/150
提交评论