




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,导数与函数的单调性,方法1: .图像法:函数y=x24x3的图象,2,递增区间:(,+).,递减区间:(,).,如何确定函数y=x24x3的单调性?,(2)作差f(x1)f(x2),并变形.,.由定义证明函数的单调性的一般步骤:,(1)设x1、x2是给定区间的任意两个 值,且x1 x2.,(3)判断差的符号(与比较),从而得函数的单调性.,方法2: .定义法,例1:讨论函数y=x24x3的单调性.,解:取x1f(x2), 那么 y=f(x)单调递减。 当20, f(x1)f(x2), 那么 y=f(x)单调递增。 综上 y=f(x)单调递增区间为(2,+) y=f(x)单调递减区间为(,2)。,那么如何判断下列函数的单调性呢?,问题:用单调性定义讨论函数 单调性虽然可行,但比较麻烦. 如果函数图象也不方便作出来时 是否有更为简捷的方法呢?,先通过函数的y=x24x3图象来考 察单调性与导数有什么关系:,2,.,.,.,.,.,.,.,观察函数y=x24x3的图象上的点的切线:,总结:该函数在区间 (,2)上递减, 切线斜率小于0,即其 导数为负,在区间(2,+)上递增,切线斜率大于0,即其 导数为正.而当x=2时其切线斜率为0,即导数为0.函数在该点单调性发生改变.,如果在某区间上f(x)0,则f(x)为该区间上增函数;,如果在某区间上f(x)0,则f(x)为该区间上减函数.,上面是否可得下面一般性的结论:,如果f(x)在这个区间(a,b)上是增函数, 那么任意x1,x2(a,b), 当x1x2 时f(x1)f(x2),即x1-x2与f(x1)f(x2)同号,从而 , 即,如果在某区间上f(x)0,则f(x)为该区间上的增函数;,如果在某区间上f(x)0,则f(x)为该区间上的减函数.,例1:讨论函数y=x24x3的单调性.,方法3:导数法,解:函数的定义域为R, f(x)=2x-4,令f (x)0,解得x2, 则f(x)的单增区间为(2,).,再令f (x)0,解得x2, 则f(x)的单减区间(,2).,总结:根据导数确定函数的单调性,1.确定函数f(x)的定义域.,2.求出函数的导数.,3.解不等式f(x)0,得函数单增区间; 解不等式f(x)0,得函数单减区间.,例2:求函数f(x)=2x3-6x2+7的单调区间.,解:函数的定义域为R,f(x)=6x2-12x,令6x2-12x0,解得x2, 则f(x)的单增区间为(,0)和 (2,).,再令6x2-12x0,解得0x2, 则f(x)的单减区间(0,2).,注:当x=0或2时, f(x)=0,即函数在该点单 调性发生改变.,例3 求函数f(x)=xlnx的单调区间.,解:函数的定义域为x0, f(x)=xlnx+x(lnx)=lnx+1.,当lnx+10时,解得x1/e.则f(x)的 单增区间是(1/e,+).,当lnx+10时,解得0x1/e.则f(x) 的单减区间是(0,1/e).,例4 判定函数y=ex-x+1的单调区间.,解: f(x) =ex-1 当ex-10时,解得 x0. 则函数的单增区间为(0,+). 当ex-10时,解得x0. 即函数的单减区间为(-,0).,1、函数f(x)=x3-3x+1的减区间为( ) (-1,1) (1,2) (C) (-,-1) (D) (-,-1) ,(1, +),课 堂 练 习,A,3、当x(-2,1)时,f(x)=2x3+3x2-12x+1是( ) 单调递增函数 (B)单调递减函数 (C)部份单调增,部分单调减 (D) 单调性不能确定,2、函数y=a(x3-x)的减区间为 a的取值范围为( ) (A)a0 (B)11 (D) 0a1,A,B,设 是函数 的导函数, 的图象如 右图所示,则 的图象最有可能的是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安卓游客协议书
- 2025授权代理协议范本
- 店面转让协议书怎么写
- 高中化学 专题2 从海水中获得的化学物质 第二单元 钠、镁及其化合物 2.2.3 离子反应说课稿1 苏教版必修1
- 3.2 氧化和燃烧 说课稿浙教版八年级下册科学
- 中国移动锦州市2025秋招笔试行测题库及答案财务审计类
- 海南燃气安全知识培训课件
- Unit 2 Illness and Health说课稿中职英语上册医护英语
- Unit 2 Were Family!Section B 第3课时Project 3a~3c 教案-七年级上册人教版英语
- 海关通关模式改革课件
- JB-T 14509-2023 反渗透海水淡化设备技术规范
- DZ∕T 0248-2014 岩石地球化学测量技术规程(正式版)
- 护理文书书写规范 (15)课件
- 二十四节气农事活动
- 食物中毒的心理援助与危机干预
- 2022星闪无线短距通信技术(SparkLink 1.0)安全白皮书网络安全
- 卫生公共基础知识考试大纲
- 小学数学六年级上册第五单元课件
- 《电子凭证会计数据标准-全面数字化的电子发票(试行版)》指南
- 湖南土建中级职称考试复习总结
- 混合痔痔的护理查房
评论
0/150
提交评论