排列组合复习课件.ppt_第1页
排列组合复习课件.ppt_第2页
排列组合复习课件.ppt_第3页
排列组合复习课件.ppt_第4页
排列组合复习课件.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两个原理的区别与联系:,做一件事或完成一项工作的方法数,直接(分类)完成,间接(分步骤)完成,做一件事,完成它可以有n类办法, 第一类办法中有m1种不同的方法, 第二类办法中有m2种不同的方法, 第n类办法中有mn种不同的方法, 那么完成这件事共有 N=m1+m2+m3+mn 种不同的方法,做一件事,完成它可以有n个步骤, 做第一步中有m1种不同的方法, 做第二步中有m2种不同的方法, 做第n步中有mn种不同的方法, 那么完成这件事共有 N=m1m2m3mn 种不同的方法.,排列和组合的区别和联系:,从n个不同元素中取出m个元 素,按一定的顺序排成一列,从n个不同元素中取出m个元 素,把它并成一组,所有排列的的个数,所有组合的个数,解决排列组合综合性问题的一般过程如下:,1.认真审题弄清要做什么事,2.怎样做才能完成所要做的事,即采取分步还 是分类,或是分步与分类同时进行,确定分多 少步及多少类。,3.确定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素.,解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略,合理分类和准确分步,解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重不漏;按事情的发生的连续过程分步,做到分步层次清楚.,例1 (1)有5本不同的书,从中选3本送给3名同学,每人 各1本,共有多少种不同的送法?,(2)有5种不同的书,要买3本送给3名同学,每人 各1本,共有多少种不同的送法?,解(1)从5本不同的书中选3本送给3名同学,相当于从5个 元素中任取3个元素的一个排列,(2)从5种不同的书中买3本书,这3本书并不要求都不 相同,用分步计数原理:,说明:两个小题的区别,(1)是典型的排列问题 (2)不是排列问题,用分步计数原理解决,例2.学生要从六门课中选学两门: (1)有两门课时间冲突,不能同时学,有几种选法? (2)有两门特别的课,至少选学其中的一门,有几种选法?,例3.从1,3,5,7中选两个数,从0,2,4,6中选两个数组成四位数,其中偶数有多少个?,例4.已知10件不同产品中共有4件次品,现对它们进行一一测试,直至找到所有次品为止. (1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品的不同测试方法数是多少? (2)若恰在第5次测试后,就找出了所有次品,则这样的不同测试方法数是多少?,例5.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( ) A152 B.126 C.90 D.54,分类讨论:若有2人从事司机工作,则方案有 ;若有1人从事司机工作,则方案有 种,所以共有18+108=126种,故B正确,例6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A 18 B 24 C 30 D 36,排除法,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论