高等数学反函数求导数的全解对大一的新生完全有用.ppt_第1页
高等数学反函数求导数的全解对大一的新生完全有用.ppt_第2页
高等数学反函数求导数的全解对大一的新生完全有用.ppt_第3页
高等数学反函数求导数的全解对大一的新生完全有用.ppt_第4页
高等数学反函数求导数的全解对大一的新生完全有用.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二、反函数的求导法则,三、复合函数的求导法则,一、函数的和、差、积、商的求导法则,2.2 函数的求导法则,四、基本求导法则与导数公式,一、四则运算求导法则,定理1.,的和、,差、,积、,商 (除分母,为 0的点外) 都在点 x 可导,且,则,此法则可推广到任意有限项的情形.,证:,设, 则,故结论成立.,例如,(2),证: 设,则有,故结论成立.,推论:,( C为常数 ),解,例1,例2 y=ex (sin x+cos x) 求y,=2excos x,解,y=(ex)(sin x+cos x)+e x (sin x+cos x),= e x,(sin x+cos x),+e x,(cos x -sin x),求导法则,例4 ysec x 求y,二、反函数的求导法则,定理2.,y 的某邻域内单调可导,证:,在 x 处给增量,由反函数的单调性知,且由反函数的连续性知,因此,则,例6 求(arctan x)及(arccot x),解,因为y=arctan x是x=tan y的反函数 所以,例5 求(arcsin x)及(arccos x),解,因为y=arcsin x是x=sin y的反函数 所以,反函数的求导法则:,在点 x 可导,三、复合函数求导法则,定理3.,在点,可导.,复合函数,且,在点 x 可导,证:,在点 u 可导,故,(当 时 ),故有,则,例如,关键: 搞清复合函数结构, 由外向内逐层求导.,推广:此法则可推广到多个中间变量的情形.,解,复合函数的求导法则:,例7,例8. 求下列导数:,解: (1),(2),例9,复合函数的求导法则:,例10,解,解,四、基本求导法则与导数公式,1. 常数和基本初等函数的导数 (P94),2. 导数的四则运算法则,( C为常数 ),4. 复合函数求导法则,3.反函数求导法则,例11.,求,解:由于,例12.,设,解:,求,例13.,求,解:,例14. 设,求,解:,例15. 若,存在 , 求,的导数.,练习: 设,解:,思考与练习,1. 设,其中,在,因,故,正确解法:,时, 下列做法是否正确?,在求,处连续,2. 求下列函数的导数,解: (1),(2),或,3. 设,求,解: 方法1 利用导数定义.,方法2 利用求导公式.,作业:p-97 习题2-2,2(2) , (8) , (10) ; 3 (2) , (3) ; 4 ; 6 (6) ,(8) ; 7 (3) , (7) , (10)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论