




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3 用公式法求解一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 用公式法求解一元二次方程,学习目标,1.理解一元二次方程求根公式的推导过程. 2.会用公式法解一元二次方程.(重点) 3.会用根的判别式b2- 4ac判断一元二次方程根的情况及相关应用(难点),问题:说一说用配方法解系数不为1的一元二次方程的步骤?,基本步骤如下: 将二次项系数化为1. 将常数项移到方程的右边,是左边只有二次项和一次项. 两边都加上一次项系数一半的平方. 直接用开平方法求出它的解.,导入新课,做一做:你能用配方法解方程 ax2 + bx +c = 0(a0) 吗?,解:二次项系数化为1,得 x2 + x + = 0 . 配方,得 x2 + x +( )2 -( )2 - = 0, 移项,得 (x + )2 =,问题1:接下来能用直接开平方解吗?,讲授新课,问题2:什么情况下可以直接开平方?什么情况下不能直接开?,(x + )2 0 , 4a2 0 . 当 b2- 4ac 0 时,不能开方(负数没有平方根). 当 b2 4ac 0 时,左右两边都是非负数.可以开方,得 x + = x =,这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做公式法.,对于一元二次方程 ax2 + bx +c = 0(a0) , 当 b2- 4ac 0时,,这个公式说明方程的根是由方程的系数a、b、c所确定的,利用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解.,例1:解方程 (1)x2 - 7x 18 = 0. 解:这里 a =1 , b =-7 , c = -18. b2 - 4ac = (-7 )2 - 41(-18 )=121 0, 即 x1 = 9 x2 = -2.,典例精析,(2)4x2 + 1 = 4x 解:将原方程化为一般形式,得 4x2 -4x + 1 = 0 . 这里a = 4 , b = -4, c = 1. b2 - 4ac = ( -4 )2 - 441 = 0 , 即 x1 = x2 =,例2 解方程:4x2-3x+2=0,因为在实数范围内负数不能开平方,所以方程无实数根.,解:,要点归纳,公式法解方程的步骤,1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值; 4.判断:若b2-4ac 0,则利用求根公式求出; 若b2-4ac0,则方程没有实数根.,问题:对于一元二次方程ax2 + bx +c = 0(a0),如何来判断根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0时,方程有两个不相等的实数根. b2 - 4ac = 0时,方程有两个相等的实数根. b2 - 4ac 0时,方程无实数根. 我们把 b2 - 4ac 叫做一元二次方程 ax2 + bx +c = 0(a0), 的根的判别式,用符号“”来表示.,不解方程判别下列方程的根的情况. (1)x2 - 6x + 1 = 0; (2)2x2 x + 2 = 0; (3)9x2 + 12x + 4 = 0.,解:(1) = (-6 )2 411= 32 0 , 有两个不相等的实数根. (2) = (-1 )2 422= -15 0 , 无的实数根. (3) = ( 12 )2 494= = 0, 有两个相等的实数根.,练一练,3、判别根的情况,得出结论.,1、化为一般式,确定a,b,c的值.,要点归纳,根的判别式使用方法,2、计算 的值,确定 的符号.,例3 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A. k5 B.k5且k1 C. k5且k1 D. k5,【解析】由题意知方程(k-1)x2+4x+1=0有两个不相等的实数根,所以有, k5且k1,故选B.,B,1.解方程:x2 +7x 18 = 0.,解:这里 a=1, b= 7, c= -18. b 2 - 4ac =7 2 4 1 (-18 ) =1210, 即 x1 = -9, x2 = 2 .,当堂练习,2. 解方程(x - 2) (1 - 3x) = 6.,解:去括号 ,得 x 2 - 3x2 + 6x = 6, 化简为一般式 3x2 - 7x + 8 = 0, 这里 a = 3, b = -7 , c = 8. b2 - 4ac=(-7 )2 4 3 8 = 4996 = - 47 0, 原方程没有实数根.,3. 解方程:2x2 - x + 3 = 0 解: 这里 a = 2 , b = - , c = 3 . b2 - 4ac = 27 - 423 = 3 0 , 即 x1= x2=,4.不解方程,判别方程5y2+1=8y的根的情况.,解:化为一般形式为:5y2-8y+1=0.,所以=b24ac=(5)2-4(-8)1=570.,所以方程5y2+1=8y的有两个不相等的实数根.,这里a=5,b=-8,c=1,,能力提升: 在等腰ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求ABC 的周长.,解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,,所以=b24ac=(b-2)2-4(6-b)=b2+8b-20=0.,所以b=-10或b=2.,将b=-10代入原方程得x2-8x+16=0,x1=x2=4;,将b=2代入原方程得x2+4x+4=0,x1=x2=-2(不符题设,舍去);,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定安工程潜水铺设方案(3篇)
- 牵牛花的种植课件
- 临床不需要编码手术操作定义及编码规则
- 安全教育平台使用培训会课件
- 山东省济南市2025年中考物理真题附真题答案
- 农业可持续发展与现代种业创新基地建设项目可行性研究报告
- 职工劳动合同样板范本
- 上托管协议的法律要素
- 新能源产业绿色升级:2025年技术创新与环保责任路径报告
- 汽车行业供应链风险管理案例解析与韧性保障报告
- 物业弱电维修课件
- 民宿旅游培训课件
- 诚信教育读本
- DZ/T 0261-2014滑坡崩塌泥石流灾害调查规范(1∶50 000)
- 《智慧物流与供应链基础》课件 第一章 智慧物流与智慧供应链
- 2025年城市更新与历史文化街区保护相结合的社区治理模式研究报告
- 计算机二级MySQL真题下载试题及答案
- 佛山市顺德区容桂街道专业电镀产业发展规划(2023-2035年)环境影响报告书(简本)
- 核酸检测知识培训课件
- 无人机的专业知识课件
- 分子生物学检验技术第一章分子生物学检验技术绪论课件
评论
0/150
提交评论