




已阅读5页,还剩50页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 导数及其应用,专题二 函数与导数,热点分类突破,真题押题精练,热点一 导数的几何意义 1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0)处的切线的斜率,曲线f(x)在点P处的切线的斜率kf(x0),相应的切线方程为yf(x0)f(x0)(xx0). 2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.,例1 (1)(2017届山东寿光现代中学月考)过点(0,1)且与曲线y 在点(3,2)处的切线垂直的直线的方程为 A.2xy10 B.2xy10 C.x2y20 D.x2y20,答案,解析,方程为y12(x0),即2xy10.故选B.,思维升华,思维升华 求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.,答案,解析,思维升华,思维升华 利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.,与曲线C2相切,设切点为(x0,y0),,是同一方程,,3xy20或3x4y10,答案,解析,若P为切点,y3x2,曲线yx3在点P处切线的斜率为3,切线方程为y13(x1),即 3xy20; 若P不为切点,设曲线yx3的切线的切点为(m,n),曲线yx3的切线的 斜率k3m2,则 3m2.,过曲线yx3上一点P(a,b)的切线方程为3xy20或3x4y10.,答案,解析,解析 设公切线与函数f(x)ln x切于点A(x1,ln x1)(x10),,h(t)在(0,2)上为减函数,,热点二 利用导数研究函数的单调性 1.f(x)0是f(x)为增函数的充分不必要条件,如函数f(x)x3在(,)上单调递增,但f(x)0. 2.f(x)0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f(x)0时,则f(x)为常函数,函数不具有单调性.,例2 (2017届河南息县第一高级中学段测)已知函数f(x)x2aln x. (1)当a2时,求函数f(x)的单调区间;,令f(x)0,得0x1, 所以f(x)的单调递增区间是(1,), 单调递减区间是(0,1).,解答,(2)若g(x)f(x) ,在1,)上是单调函数,求实数a的取值范围.,解答,思维升华,若函数g(x)为1,)上的单调增函数, 则g(x)0在1,)上恒成立,,(x)在1,)上单调递减,,(x)max(1)0,a0; 若函数g(x)为1,)上的单调减函数, 则g(x)0在1,)上恒成立,不可能. 实数a的取值范围为0,).,思维升华 利用导数研究函数单调性的一般步骤 (1)确定函数的定义域. (2)求导函数f(x). (3)若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f(x)0或f(x)0; 若已知函数的单调性,则转化为不等式f(x)0或f(x)0在单调区间上恒成立问题来求解.,答案,解析,答案,解析,热点三 利用导数求函数的极值、最值 1.若在x0附近左侧f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极小值. 2.设函数yf(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得.,解答,例3 (2017届云南大理州统测)设函数G(x)xln x(1x)ln(1x). (1)求G(x)的最小值;,解 由已知得0x1,,(2)记G(x)的最小值为c,已知函数f(x)2aexc 2(a1)(a0),若 对于任意的x(0,),恒有f(x)0成立,求实数a的取值范围.,解答,思维升华,解 由(1)中cln 2,,令g(x)ax2ex(a1), 则g(x)ax(2x)ex0, 所以g(x)在(0,)上单调递增, 因为g(0)(a1),且当x时,g(x)0, 所以存在x0(0,),使g(x0)0,且f(x)在(0,x0)上单调递减,在(x0,)上单调递增.,因为对于任意的x(0,),恒有f(x)0成立,,思维升华 (1)求函数f(x)的极值,则先求方程f(x)0的根,再检查f(x)在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f(x)0根的大小或存在情况来求解. (3)求函数f(x)在闭区间a,b上的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.,跟踪演练3 已知函数f(x)ax3bx2,在x1处取得极值 . (1)求a,b的值;,解 由题设可得f(x)3ax22bx,,解答,(2)若对任意的x0,),都有f(x)kln(x1)成立(其中f(x)是函数f(x)的导函数),求实数k的最小值.,解答,f(x)x2x,x2xkln(x1)在0,)上恒成立, 即x2xkln(x1)0在x0,)上恒成立, 设g(x)x2xkln(x1),则g(0)0,,设h(x)2x2xk1,,g(x)0,g(x)在0,)上单调递增,,设x1,x2是方程2x2xk10的两个实根,,由题设可知,当且仅当x20,即x1x20,即k10,即k1时, 对任意的x0,)有h(x)0,即g(x)0在0,)上恒成立, g(x)在0,)上单调递增,,综上,k的取值范围为1,), 实数k的最小值为1.,真题体验,1.(2017浙江改编)函数yf(x)的导函数yf(x)的图象如图所示,则函数yf(x)的图象可能是_.(填序号),答案,解析,1,2,3,4,解析 观察导函数f(x)的图象可知,f(x)的函数值从左到右依次为小于0,大于0,小于0,大于0, 对应函数f(x)的增减性从左到右依次为减、增、减、增. 观察图象可知,排除,.,如图所示,f(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x20,故正确.,1,2,3,4,2.(2017全国改编)若x2是函数f(x)(x2ax1)ex1的极值点,则f(x)的极小值为_.,1,答案,解析,1,2,3,4,解析 函数f(x)(x2ax1)ex1, 则f(x)(2xa)ex1(x2ax1)ex1 ex1x2(a2)xa1. 由x2是函数f(x)的极值点,得 f(2)e3(42a4a1)(a1)e30, 所以a1, 所以f(x)(x2x1)ex1,f(x)ex1(x2x2).,1,2,3,4,由ex10恒成立,得当x2或x1时,f(x)0, 且x2时,f(x)0; 当2x1时,f(x)0; 当x1时,f(x)0. 所以x1是函数f(x)的极小值点. 所以函数f(x)的极小值为f(1)1.,1,2,3,4,3.(2017山东改编)若函数exf(x)(e2.718 28是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是_.(填序号) f(x)2x; f(x)x2; f(x)3x; f(x)cos x.,答案,解析,1,2,3,4,解析 若f(x)具有性质M, 则exf(x)exf(x)f(x)0在f(x)的定义域上恒成立, 即f(x)f(x)0在f(x)的定义域上恒成立. 对于式,f(x)f(x)2x2xln 22x(1ln 2)0,符合题意. 经验证,均不符合题意. 故填.,1,2,3,4,4.(2017全国)曲线yx2 在点(1,2)处的切线方程为_.,答案,解析,1,2,3,4,yx1,即曲线在点(1,2)处的切线的斜率k1, 切线方程为y2x1,即xy10.,押题预测,答案,解析,押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“过某一点的切线”问题,也是易错易混点.,押题依据,1,2,3,4,1.设函数yf(x)的导函数为f(x),若yf(x)的图象在点P(1,f(1)处的切线方程为xy20,则f(1)f(1)等于 A.4 B.3 C.2 D.1,解析 依题意有f(1)1,1f(1)20,即f(1)3, 所以f(1)f(1)4.,答案,解析,押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点.,押题依据,1,2,3,4,解析 由题意知f(x)3x22axb,f(1)0,f(1)10,,1,2,3,4,3.已知函数f(x)x2ax3在(0,1)上为减函数,函数g(x)x2aln x在(1,2)上为增函数,则a的值等于_.,答案,解析,押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别.,押题依据,1,2,3,4,2,解析 函数f(x)x2ax3在(0,1)上为减函数,,1,2,3,4,得2x2a在x(1,2)上恒成立,有a2,a2.,4.已知函数f(x)x ,g(x)x22ax4,若对任意x10,1,存在 x21,2,使f(x1)g(x2),则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人民交通出版社说课稿-2025-2026学年中职中职专业课汽车制造与维修类66 装备制造大类
- 2025年医卫类病理学技术(正副高)正高-正高参考题库含答案解析(5套)
- 2025年医卫类病案信息技术(师)基础知识-基础知识参考题库含答案解析(5套)
- 2025年医疗项目经理面试必-备预测题及行业分析
- 2025年医卫类病案信息技术(中级)基础知识-相关专业知识参考题库含答案解析(5套)
- 2025年医卫类放射医学(师)相关专业知识-基础知识参考题库含答案解析(5套)
- 二零二五年度房地产抵押贷款合同(开发商贷款)
- 二零二五年度二手房买卖垫资合同保密条款协议
- 二零二五年新型材料使用建筑装饰植筋劳务分包合同
- 二零二五年度教育设施改造工程款项支付担保协议范本
- 于永正教育文集:于永正:我怎样教语文
- 高中英语新外研版选择性必修四Unit2知识点归纳总结(复习课件)
- XX市选调生跟班学习鉴定表
- 身为职场女性:女性事业进阶与领导力提升
- 普洱市森洁乳胶制品有限公司灭菌乳胶医用手套工厂项目环评报告书
- 著名文学著作列夫托尔斯泰《复活》教育阅读名著鉴赏课件PPT
- 泛微协同办公应用平台解决方案
- (新)部编人教版高中历史中外历史纲要上册《第13课-从明朝建立到清军入关课件》讲解教学课件
- 医药行业专题报告:VCTE技术(福瑞股份子公司)专利概览
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 关于规范学校中层及以上领导干部岗位设置及任免办法
评论
0/150
提交评论