模型之二:复利计算的数学模型.doc_第1页
模型之二:复利计算的数学模型.doc_第2页
模型之二:复利计算的数学模型.doc_第3页
模型之二:复利计算的数学模型.doc_第4页
模型之二:复利计算的数学模型.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模型之二:复利计算的数学模型一、单利和复利单利 在贷款过程中,本期利息不转入下期本金的计算利息方法称为单利法。利息与本金之比称为利率。以 表示本金,表示利息,利率记为 ,则有。若贷款时间为 期,则单利计算公式为:例1 50000 元存了 5 个月得利息 1400元,单利计算,求月利率。解 已知 , , 。 从上式解出 ,得 即月利率为 5 厘 6 。 复利 在贷款一期之末结息一次,并将利息转入本金,即该利息与本金一起作为下一期本金产生利息, 这种计息方法称为复利。记本利和为 ,。第 2 期末的本利和为,第 3 期末的本利和为: ,第 期末的本利和为:。贷款 期的利息为: 。例2 若本金为 700 元,年利率为 10,复利计算。为得本利和 1240 元,求存期。解 在等式 两边取常用对数得 , 已知 , , , 从上式解出 , 得 年,即为得本利和 1240 元,需存 6 年。二、货币的时间价值(现值和终值) 货币用来投资,随着时间的推移会产生收益,从而使货币增值,这就是货币的时间价值。由于银行利率由经济发展的各种因素综合确定,因此,通常用银行利率来计算货币的时间价值。终值和现值是刻画货币时间价值的两个概念。 在复利计算公式 中, 称为 期末 的终值,表示现在的 元到 期末将变为 元 。反过来, 期末的 元相等于现在的 元, 和 的关系为 。称为 的现值。 例3 公司欲进行厂房投资,厂房价格为 万元。据预测,厂房 3 年后的价格将为 27 万元,银行年利率为 ,试问此项投资是否合算。解法一计算 3 年后 万元的现值,即现值低于投资,投资不合算。解法二 计算 3 年后的终值。万元,即存银行收益率超过房屋投资的收益,该房屋投资是不可行的。两种解法的结论一致。三、周期支付和偿还问题按终值计算法: 设在每期初支付(或偿还)的金额为一固定数 ,每期的利率为 ,记第 期末时总共支付(或偿还)的总金额的终值为 ,则有: 利用等比级数求和公式,。 若支付(或偿还)发生在每期的期末,记第 期末时总共支付(或偿还)的总金额的终值为 。因为每期的支付(或偿还)都要少记一期的利息,应有 , 利用等比级数求和公式,。按现值计算法:由于在第 期末数量为 的货币相当于现值为 的货币,把上述相应的终值公式改变后可以得到相应的现值公式。 在每期初支付(或偿还)金额为一固定数 ,到第 期末时总共支付(或偿还)的总金额的现值记为 ,则有 。 在每期末支付(或偿还)金额为一固定数 ,到 期期末时总共支付(或偿还)的总金额的现值记为 ,则有 。例4商店用分期付款的方式吸引顾客购买电视机。一种售价为 3000 元的电视机,若购买时首次付 500 元,以后每隔一个月付款一次,每次付款数一样,一年内付清全部款项,每月应定为付款多少?银行贷款月利率为 1.2 设为不变。分析和求解分析 首次付款后的 12 次付款可以看作发生在期末、付款数相同的 12 次周期付款。支付的总金额的现值应该等于首次支付后的货款余额 。求解 按上述 公式计算,应有 。 解得 ,即每月应支付 225 元。例5诺贝尔奖金金额 A诺贝尔( Alfred Bernhard Nobel(18331896))把他留下的大部分财产投资于安全证券构成基金,其利息以奖金方式奖给对人类作出了最有益贡献的人。现在诺贝尔奖分为 6 项:物理学、化学、文学、经济学、生理学和医学以及和平奖。诺贝尔留作基金的总额为 850 万美元,随着物价的上涨,颁发给受奖人的奖金金额正逐步提高。1998 年诺贝尔奖每项奖金金额为 98.7 万美元。问诺贝尔奖基金的利率是多少?分析和求解分析 诺贝尔基金会开始时的投资总额为 850 万美元,为了增加资金总额应以复利形式投资,才能支付日益增加的奖金金额。为了简化问题,作以下假设:假设一 每年平均复利率不变为。假设二 每年发放奖金的总额是该年所获利息的一半,另一半利息用于增加基金资金总额。假设三 1896 年记作 0 年,1897 年起作为奖金颁发的第一年,以后每年颁发奖金一次。由假设三,1998 年为第 102 年。建立模型 设 表示第 年资金的总额。第 年的本金和按利率 计算应为 ,其中利息 的一半作为第 年颁发的奖金,余下的总金额归入第 年的基金总额 ,因而得 由 1998 年 的奖金数,得 。求解 可通过叠代法解。有我们用编写下面 Matlab 程序来求方程的根。方法一:用for循环(缺点是循环次数自己要先估计)clearformat shortyy(1)=0.95for i=1:50 z=log(1.3934/yy(i)/102; yy(i+1)=2*(exp(z)-1); if abs(yy(i+1)-yy(i)=0.000001 i=i+1; z=log(1.3934/yy(i)/102; yy(i+1)=2*(exp(z)-1);endyyy=yy(i+1);yyy验证 利用求得的 可算出各年份的诺贝尔奖的金额,这样的计算结果与实际基本相符合。以下程序可再现 P28页的表格:clearformat short gyyy =0.0620year=zeros(102,1);bj=zeros(102,1);jj=zeros(102,1);year(1)=1896;bj(1)=850;for i=1:102 year(i+1)=year(i)+ 1; bj(i+1)=(1+yyy)*bj(i)-yyy/2*bj(i); jj(i+1)=yyy/2*bj(i+1)/6;endyear,bj,jj年份资金总额估计值(万美元)每项诺贝尔奖的金额(万美元)1960599331.01970813242.019801103357.019901497177.319981911098.7200020339 105.1201027600 142.6201229338 151.6注:2012年诺贝尔奖每项奖金为1000万瑞典克朗(包括我国莫言的文学奖:约合937万人民币,约合148万美元,非常接近表格内的数字)。例6房屋贷款偿还问题 为了促进个人住房商品化的进程,我国 1999 年元月公布了个人住房公积金贷款利率如下表所示。贷款期限 (年数)公积金贷款月利率()13.5423.6333.7243.7853.8763.9674.0584.1494.2075104.275114.365124.455134.545144.635154.725 王先生家要购买一套商品房,需要贷款公积金贷款 10 万元,分 12 年还清,贷款按月等额偿还。问: 王先生每月应还款多少? 用列表方式给出每年年底王先生尚欠的款项。分析和求解假设假设一 王先生有足够的支付能力,可以及时按月等额偿还;假设二 在还款期间贷款利率不变。建立模型以 表示第 个月王先生尚欠的公积金金额(公积金贷款余额), 每月的还款数记为 。第 个月王先生的公积金贷款余额 与第 个月的公积金贷款余额 的关系为。 (1)每月的公积金还款数可以按周期性还款公式计算。公积金贷款总额 ,月利率 ,还款次数 ,还款可视为发生在每期期末。由还款现值公式,应有 ,解得 。求解 方程(1)是一个差分方程,求解简单差分方程的一般方法可参考教材的第十四章,这里可用迭代法归纳出解为。完全类似地可以计算出王先生的商业贷款余额(书P31):。由此可计算出王先生各月的公积金贷款余额如教材中第 32 页的表格第二列所示。完全类似地可计算出王先生各月的商业贷款余额如教材中第 32 页的表格第三列所示。我们可以用Matlab编程求解本问题,程序如下:clearformat short gyy1=0.004455; yy2=0.005025;B=942.34; C=1268.20;y0=100000; z0=150000;yr=zeros(15,1);y=zeros(15,1);z=zeros(15,1);for i=1:15 k=12*i; yr(i)=i; y(i)=(1+yy1)k*y0-(1+yy1)k-1)/yy1*B; if y(i)10 y(i)=0; end z(i)=(1+yy2)k*z0-(1+yy2)k-1)/yy2*C; if z(i)10 z(i)=0; endendyr,y,z,y+z下面是上述程序执行的结果,可以看到它与教材中第 32 页的表格十分吻合:第几年公积金贷款余额商业贷款余额总的贷款余额1938901.4365e+0052.3754e+0052874451.3691e+0052.2436e+0053806461.2975e+0052.104e+0054734751.2215e+0051.9563e+0055659121.1408

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论