




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第五节,一、平面的点法式方程,二、平面的一般方程,三、两平面的夹角,机动 目录 上页 下页 返回 结束,平面及其方程,第七章,一、平面的点法式方程,设一平面通过已知点,且垂直于非零向,称式为平面的点法式方程,求该平面的方程.,法向量.,量,则有,故,机动 目录 上页 下页 返回 结束,例1.求过三点,即,解: 取该平面 的法向量为,的平面 的方程.,利用点法式得平面 的方程,机动 目录 上页 下页 返回 结束,此平面的三点式方程也可写成,一般情况 :,过三点,的平面方程为,说明:,机动 目录 上页 下页 返回 结束,特别,当平面与三坐标轴的交点分别为,此式称为平面的截距式方程.,时,平面方程为,分析:利用三点式,按第一行展开得,即,机动 目录 上页 下页 返回 结束,二、平面的一般方程,设有三元一次方程,以上两式相减 , 得平面的点法式方程,此方程称为平面的一般,任取一组满足上述方程的数,则,显然方程与此点法式方程等价,的平面,因此方程的图形是,法向量为,方程.,机动 目录 上页 下页 返回 结束,特殊情形, 当 D = 0 时, A x + B y + C z = 0 表示,通过原点的平面;, 当 A = 0 时, B y + C z + D = 0 的法向量,平面平行于 x 轴;, A x+C z+D = 0 表示, A x+B y+D = 0 表示, C z + D = 0 表示, A x + D =0 表示, B y + D =0 表示,平行于 y 轴的平面;,平行于 z 轴的平面;,平行于 xoy 面 的平面;,平行于 yoz 面 的平面;,平行于 zox 面 的平面.,机动 目录 上页 下页 返回 结束,例2. 求通过 x 轴和点( 4, 3, 1) 的平面方程.,例3.用平面的一般式方程导出平面的截距式方程.,解:,因平面通过 x 轴 ,设所求平面方程为,代入已知点,得,化简,得所求平面方程,(P327 例4 , 自己练习),机动 目录 上页 下页 返回 结束,三、两平面的夹角,设平面1的法向量为,平面2的法向量为,则两平面夹角 的余弦为,即,两平面法向量的夹角(常为锐角)称为两平面的夹角.,机动 目录 上页 下页 返回 结束,特别有下列结论:,机动 目录 上页 下页 返回 结束,因此有,例4. 一平面通过两点,垂直于平面: x + y + z = 0, 求其方程 .,解: 设所求平面的法向量为,即,的法向量,约去C , 得,即,和,则所求平面,故,方程为,且,机动 目录 上页 下页 返回 结束,外一点,求,例5. 设,解:设平面法向量为,在平面上取一点,是平面,到平面的距离d .,则P0 到平面的距离为,(点到平面的距离公式),机动 目录 上页 下页 返回 结束,例6.,解: 设球心为,求内切于平面 x + y + z = 1 与三个坐标面所构成,则它位于第一卦限,且,因此所求球面方程为,四面体的球面方程.,从而,机动 目录 上页 下页 返回 结束,内容小结,1.平面基本方程:,一般式,点法式,截距式,三点式,机动 目录 上页 下页 返回 结束,2.平面与平面之间的关系,平面,平面,垂直:,平行:,夹角公式:,机动 目录 上页 下页 返回 结束,思考与练习,P330 题4 , 5, 8,第六节 目录 上页 下页 返回 结束,作业 P330 2 , 6 , 7 , 9,备用题,求过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学实习案例分析报告及指导意见
- 医院医疗安全事件考核题库
- 消防工程合同示范文本
- 企业合同纠纷典型案例及法理解析
- 普通研磨工节假日前安全考核试卷含答案
- 医师荣誉颁奖词模板范例集
- 滴丸工节假日前安全考核试卷含答案
- 家务劳动教育主题家长沟通信函
- 电动吊篮安装验收记录标准表
- 初中化学重点章节教学教案设计
- 运动会进行课件
- 2025年煤矿企业主要负责人安全生产理论考试笔试试题含答案
- 2025年河南省事业单位面向哈密市和十三师新星市少数民族高校毕业生专项招聘15名考试参考题库及答案解析
- 苗族舞蹈课件
- 煤矿安全规程2025版解读
- 监狱公选面试题库及答案
- 具有法律效应的还款协议书6篇
- 2025年中国铁建集团招聘面试模拟题及答案详解
- T-AOPA0062-2024电动航空器电推进系统动力电机控制器技术规范
- 2025特种设备(电梯)安全管理人员A证考试试卷(200道)及答案
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
评论
0/150
提交评论