




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二元一次方程与一次函数,回顾思考,1、方程组 有 个解; 2、方程组 有 个解; 3、方程组 有 个解;,0,无数,一,两条直线互相平行,有 交点; 两条直线重合,有 交点; 两条直线相交,有 交点;,0个,无数个,一个,知识源于悟,十七世纪法国数学家笛卡尔有一次生病卧床,他看见屋顶上的一只蜘蛛顺着左右爬行,笛卡尔看到蜘蛛的“表演”猛的灵机一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能知道蜘蛛的位置用一组数确定下来呢? 在蜘蛛爬行的启示下,笛卡尔创建了直角坐标系,直角坐标系的创建,在代数和几何上架起了一座桥梁。在坐标系下几何图形(形)和方程(数)建立了联系。笛卡尔坐标系起到了桥梁和纽带的作用,而我们可以把图形化成方程来研究,也可以用图象来研究方程。 , 这节课我们就来研究二元一次方程(组)与一次函数(形)的关系。,蜘蛛给笛卡尔什么启示:,x+y=5这是什么?,一次函数,这是怎么回事?,二元一次方程,同学的争论,方程x+y=5可以转化为,任意一个二元一次方程都可以转化成y=kx+b的形式,所以每个二元一次方程都对应一个一次函数.,归纳:,思考:是不是任意的二元一次方程都能进行这样的转换呢?,y=5-x,师1)方程X+Y=5的解有 无数多个解 , (0,5) 、(5,0) 、(1,4) 。.,(2)在直角坐标系中分别描出以这些解为坐标的点,它们都在函数Y=5-X上吗?,(0,5) 、(5,0) 、(1,4) .都在函数Y=5-X的图象上.,(3)在一次函数Y=5-X的图象上任取一个点,它的坐标适合方程X+Y=5吗?,在一次函数Y=5-X的图象上任取一个点(0,5),它的坐标适合方程X+Y=5.,(4)以方程X+Y=5的解为坐标的所有的点所组成的图象与一次函数Y=5-X的图象相同吗 ?,过(0,5) 、(5,0) 两点的直线图象与一次函数Y=5-X的图象相同.,归纳,每个二元一次方程都可转化为一次函数,师:通过以上结论,你能分析研究出二元一次方程与一次函数图象的关系吗?,生:二元一次方程的解就是一次函数图象的点的 坐标;一次函数图象上的点的坐标就是二元一次方程的解.,明确,二元一次方程与一次函数的基本关系,1) 在同一直角坐标系中分别作一次函数Y=5-X和Y=2X-1的图象,这两个图象有交点吗?,在同一直角坐标系中一次函数Y=5-X和Y=2X-1的图象有交点,交点坐标是(2,3)。,P(2,2),y=2x-2,解 由(1)得,进而作出 的图象,(1)对应关系,将方程组中各方程化为y=kx+b的形式; 画出各个一次函数的图象; 由交点坐标得出方程组的解,(2)图象法解方程组的步骤:,自己总结,你一定能行的!,1、一次函数y=5-x与y=2x-1图象的交点为(2,3), 则方程组 的解为 .,2、若二元一次方程组 的解为 , 则函数 与 的图象的交点坐标为 .,(2,2),3根据下列图象,你能说出是哪些方程组的解?这些解是什么?,求直线 与 直线的交点坐标。你有哪些方法?与同伴交流,并一起分析各种方法的利弊,解法思路2:由解方程组,得到交点坐标(把形的问题归结为数的解决,便捷准确),解法思路l:画出图象找出交点,确定交点坐标近似值(因作图误差可能有较大差别),探究,知识的升华,1) 二元一次方程与一次函数的区别与联系,二元一次方程的解是一次函数上点的坐标; 一次函数上每一个点的坐标就是二元一次方程的一组解.,2) 二元一次方程组的解法总共学习了哪几种?,加减法;代入法;图象法.,3) 方法归纳,用图象法解二元一次方程组 优点:方法简便,形象直观;体现了数形结合思想. 不足:一般情况下求出的是近似数;要想精确还要用代 数方法,进行细致计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆市綦江区石角镇招聘公益性岗位人员2人考试参考题库及答案解析
- 2025浙江宁波宁能投资管理有限公司招聘1人考试参考试题及答案解析
- 2025年甘肃省酒泉市瓜州县招聘村副职干部30人考试参考题库及答案解析
- 2025湖南株洲市石峰区公益性岗位(第二批)开发计划模拟试卷(含答案详解)
- 2025福建福州左海置地有限公司招聘10人备考考试题库附答案解析
- 2025安徽淮南市招考村级后备干部81人考前自测高频考点模拟试题及答案详解(新)
- 2025年下半年四川省卫生健康委员会所属事业单位考试招聘27人考试参考试题及答案解析
- 2025年金华义乌市中心医院健康管理中心招聘非编人员1人备考考试题库附答案解析
- 2025河北保定白沟新城招聘社区工作者部分岗位调整招聘计划补充考试参考试题及答案解析
- 南充市融媒体中心2025年引进高层次人才公开考核招聘(6人)考试模拟试题及答案解析
- 洗衣房衣物洗涤操作规范
- 石材安装采购合同协议
- 2025年03月四川天府新区“蓉漂人才荟”事业单位(13人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 儿童发展问题的咨询与辅导-案例1-5-国开-参考资料
- 2024年度教育培训机构投资合作协议范本3篇
- 广东省广州市荔湾区西关广雅实验学校2024-2025学年八年级(上)期中物理试卷(含答案)
- 【MOOC】生物统计学-南京农业大学 中国大学慕课MOOC答案
- 食品生产许可审查通则试题
- 医保定点零售药店申请表
- 天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解
- 院感及院感管理基本概念课件
评论
0/150
提交评论