已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦、余弦函数的性质,主讲:许文艳,(奇偶性、单调性),正弦、余弦函数的图象和性质,y=sinx (xR),y=cosx (xR),定义域,值 域,周期性,xR,y - 1, 1 ,T = 2,正弦、余弦函数的奇偶性、单调性,sin(-x)= - sinx (xR),y=sinx (xR),是奇函数,cos(-x)= cosx (xR),y=cosx (xR),是偶函数,定义域关于原点对称,正弦、余弦函数的奇偶性,正弦、余弦函数的奇偶性、单调性,正弦函数的单调性,y=sinx (xR),增区间为 , 其值从-1增至1, 0 ,-1,0,1,0,-1,减区间为 , 其值从 1减至-1, +2k, +2k,kZ, +2k, +2k,kZ,正弦、余弦函数的奇偶性、单调性,余弦函数的单调性,y=cosx (xR),- 0 ,-1,0,1,0,-1,正弦、余弦函数的奇偶性、单调性,例1 不通过求值,指出下列各式大于0还是小于0: (1) sin( ) sin( ),(2) cos( ) - cos( ),解:,又 y=sinx 在 上是增函数,解:,又 y=cosx 在 上是减函数,cos( )=cos =cos,cos( )=cos =cos,从而,cos( ) - cos( ) 0,正弦、余弦函数的奇偶性、单调性,例2 求下列函数的单调区间:,(1) y=2sin(-x ),解:,y=2sin(-x ),= -2sinx,(2) y=3sin(2x- ),单调增区间为,所以:,解:,单调减区间为,正弦、余弦函数的奇偶性、单调性,解:,(4),正弦、余弦函数的奇偶性、单调性,(5) y = -| sin(x+ )|,解:,令x+ =u ,则 y= -|sinu| 大致图象如下:,减区间为,增区间为,即:,y为减函数,小 结:,正弦、余弦函数的奇偶性、单调性,奇偶性,单调性(单调区间),奇函数,偶函数, +2k, +2k,kZ,单调递增, +2k, +2k,kZ,单调递减,函数,求函数的单调区间:,1. 直接利用相关性质,2. 复合函数的单调性,3. 利用图象寻找单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买社保协议合同范本
- 花市门面转租合同范本
- 索菲亚定制柜合同范本
- 转让足疗店合同协议书
- ktv招商合同范本
- 三方协议汽修签合同
- app项目合同范本
- 2025年林场木材采伐责任合同
- 【正版授权】 ISO 7169:1993 EN Aerospace fluid systems - Separable tube fittings for 24 degrees cone - General specification
- 咨询服务合同协议(2025管理咨询)
- 2026年高考作文备考之10组主题+人民日报素材积累+主体段写作范例
- 民法典之遗嘱继承课件
- 职工困难借款管理办法
- (2025年标准)购买 菌包 协议书
- 公务员备考数据分析公式详解
- 医院账务合并方案模板(3篇)
- 护理人文关怀试点病房汇报
- 储粮机械通风技术
- 2025年公共交通智能调度系统采购及运维服务合同
- 麻醉恢复室常见并发症及防治要点
- 寺庙厨房安全管理办法
评论
0/150
提交评论