




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2 直线的点斜式方程,复习,1.倾斜角 的定义及其取值范围;,直线的倾斜角的取值范围是:00, 1800),B,在平面直角坐标系内,如果给定一条直线 经过的一个点 和斜率 ,能否将直线上所有的点的坐标 满足的关系表示出来呢?,问题,问题引入,直线经过点 ,且斜率为 ,设点 是直线上不同于点 的任意一点,因为直线 的斜率为 ,由斜率公式得:,即:,问题引入,(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程 吗?,(2)坐标满足方程 的点都在过点 ,斜率为 的直线 上吗?,经过探究,上述两条都成立,所以这个方程就是过点 ,斜率为 的直线 的方程,探究,概念理解,方程 由直线上一点及其斜率确定,把这个方程叫做直线的点斜式方程,简称点斜式(point slope form),直线的点斜式方程,(1) 轴所在直线的方程是什么?,,或,当直线 的倾斜角为 时,即 这时直线 与 轴平行或重合,,的方程就是,问题,坐标轴的直线方程,故 轴所在直线的方程是:,(2) 轴所在直线的方程是什么?,,或,当直线 的倾斜角为 时,直线没有斜率,这时直线 与 轴平行或重合,它的方程不能用点斜式表示这时,直线 上每一点的横坐标都等于 ,所以它的方程就是,坐标轴的直线方程,问题,故 轴所在直线的方程是:,例1 直线 经过点 ,且倾斜角 ,求直线 的点斜式方程,并画出直线 ,代入点斜式方程得: .,画图时,只需再找出直线 上的另一点 ,例如,取 ,得 的坐标为 ,过 的直线即为所求,如图示,解:直线 经过点 ,斜率 ,,典型例题,如果直线 的斜率为 ,且与 轴的交点为 ,代入直线的点斜式方程,得:,也就是:,x,y,O,l,b,我们把直线与 轴交点的纵坐标b叫做直线在轴上的截距(intercept),该方程由直线的斜率与它在 轴上的截距确定,所以该方程叫做直线的斜截式方程,简称斜截式(slope intercept form),直线的斜截式方程,观察方程 ,它的形式具有什么特点?,我们发现,左端 的系数恒为1,右端 的系数 和常数项 均有明显的几何意义:,直线的斜截式方程,问题,斜截式是点斜式的特例。只适用于斜率存在的情形。,直线在坐标轴上的横、纵截距及求法: 截距的值是实数,它是坐标值,不是距离,方程 与我们学过的一次函数的表达式类似我们知道,一次函数的图象是一条直线你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?,你能说出一次函数 及 图象的特点吗?,问题,直线的斜截式方程,例2 已知直线 ,试讨论:(1) 的条件是什么?(2) 的条件是什么?,解:(1)若 ,则 ,此时 与 轴的交点不同,即 ;反之, ,且 时, ,(2)若 ,则 ;反之, 时, ,典型例题,例2 已知直线 ,试讨论:(1) 的条件是什么?(2) 的条件是什么?,解:,于是我们得到,对于直线:,且 ;,典型例题,(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医药科技公司合同协议书
- 农行就业协议合同书模板
- 保安身体不健康协议合同
- 合伙养殖合作协议合同书
- 厂房建设入股合同协议书
- 包办装修合同补充协议书
- 半成品委托加工合同范本
- 人员派出医院进修协议书
- 多个房东的商铺合同范本
- 变更劳动合同的书面协议
- bc-6800产品中心医院
- 中国古代文学史 马工程课件(下)24第九编晚清文学 第三章 宋诗派的兴起与桐城派的承变
- GB/T 40565.2-2021液压传动连接快换接头第2部分:20 MPa~31.5 MPa平面型
- GB/T 38537-2020纤维增强树脂基复合材料超声检测方法C扫描法
- GB/T 11446.10-1997电子级水中细菌总数的滤膜培养测试方法
- 儿童生长发育监测课件
- 混凝土结构跳仓施工方案
- 页岩气开发地震监测技术要求DB50-T 1234-2022
- 实验室病原微生物危害 评估报告
- 科技项目申报专员系列培训(技术攻关项目)
- 品质异常处罚细则及奖罚制度
评论
0/150
提交评论