




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学课件,数学 八年级上册 RJ版,第十一章 三角形 11.3 多边形及其内角和,问题2:你知道长方形和正方形的内角和是多少吗? 其他四边形的内角和是多少?,问题1:你还记得三角形内角和是多少度吗?,(三角形的内角和等于 180),(都是360),想一想,1. 从n边形的一个顶点可以引条对角线, 将n边形分成了_个三角形.,2. n边形的对角线一共有_ 条.,(n-3),(n-2),温故知新,问题3:在探究四边形的内角和时,有的同学不是用量角器度量计算得到,而是 按照如图所示,利用辅助线将四边形分割成两个三角形的方法,利用三角形的内角和等于180,得到四边形的内角和等于360。你能说明它的合理性吗?并且启发你能否借助辅助线找到不同的分割方法呢?,想一想,学一学,四边形的内角和为360,B,A,C,D,E,探究1,五边形的内角和为3180540,把一个五边形分成几个三角形,还有其他的分法吗?,A,B,C,D,E,F,180 4 180 = 540,E,A,B,C,D,O,180 5 360= 540,A,B,C,D,E,4 180180 =540,O,学一学,n边形的内角和为(n2) 180,2.如果一个多边形的内角和是1440,那么这是几边形。 解析:由多边形的内角和公式可得(n - 2) 180 = 1 440,n - 2 = 8,n =10,这是十边形。,3.已知一个多边形每个内角都等于 108 ,求这个多边形的边数?,1.八边形的内角和等于多少度? 十边形呢?,解:设这个多边形的边数为n,根据题意得: (n2) 180=108n 解得n=5 答:这个多边形是五边形。,如果一个四边形的一组对角互补,那么另一组对角有什么关系?,解:,如图,在四边形ABCD中, A+ C =180,A+B+C+D=(42) 180 = 360 ,因为,BD,= 360(AC) = 360 180,=180,即如果四边形的一组对角互补,那么另一组对角也互补,所以,例1 :,如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是_.,互补,十二边形的内角和是( ). 当一个多边形的边数增加1时,它的内角和增加( ). 一个多边形的内角和是720,则此多边形共有( )个内角. 如果一个多边形的内角和是1440,那么这是( )边形.,1 800,180,6,十,【例2】如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和等于多少?,1.任意一个外角和它相邻的内角有什么关系? 2.五个外角加上与它们相邻的五个内角的和是多少? 3.这五个平角和与五边形的内角和、外角和有什么关系?,6,多边形的外角和,五边形的外角和 =5个平角五边形的内角和 =5180(52) 180 =360 ,结论:五边形的外角和等于360.,6,【例2】如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和等于多少?,例3 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?,多边形的外角和,探究 在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和,n边形的外角和 =n个平角-n边形的内角和 = n180 (n2) 180=360 ,结论:n边形的外角和等于360.,n边形的外角和是多少度?,4,正n边形的每个内角的度数是,正n边形的每个外角的度数是,(1)若十二边形的每个内角都相等,那么每个内角是_. (2)已知多边形的每个内角都是135,则这个多边形是_. (3)如果某个多边形的内角和等于它的外角和,那么这个多边形的边数是_.,做一做,150,八边形,4,练习2: 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数.,解: 设多边形的边数为n. 它的内角和等于 (n2)180, 外角和等于360, (n2)180=2 360. 解得 n=6. 这个多边形的边数为6.,今天的收获,1、n边形的内角和等于(n2)180.,3、利用类比归纳、转化的学习方法,可以把多边形问题转化为三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川建筑职业技术学院《物联网应用3》2024-2025学年第一学期期末试卷
- Ⅲ类射线装置辐射工作人员试题库及考核规则
- 2025年初级会计师财务成本管理知识要点解析与模拟题集
- 河南牧业经济学院《网络工程导论》2024-2025学年第一学期期末试卷
- 2025年建筑项目经理高级面试题详解
- 2025年客服员招聘面试题及答案解析含语音情景模拟题
- 2025年初级营养师知识模拟考试及答案解析
- 家具基础修理知识培训内容课件
- 2025年焊接工艺面试模拟题熔化焊接技术高频考点
- 2025年人力资源管理师考试实务备考攻略
- 与欧美网红合作合同范本
- 2025年广东省中考数学试卷(含解析)
- 2025湖南非全日制用工劳动合同范本2
- 互操作性标准-第1篇-洞察及研究
- 熏蒸药品管理办法
- 广告牌安装后维护养护措施
- 大件运输安全管理制度
- 《电子产品制造技术》课件-第1章 电子工艺技术入门
- Q-GDW12562-2024超特高压盘形悬式瓷绝缘子用瓷件原材料、工艺和检验规则
- 一线员工执行力培训内容
- 幼教拍摄培训
评论
0/150
提交评论