卫星链路计算软件Satmaster帮助.doc_第1页
卫星链路计算软件Satmaster帮助.doc_第2页
卫星链路计算软件Satmaster帮助.doc_第3页
卫星链路计算软件Satmaster帮助.doc_第4页
卫星链路计算软件Satmaster帮助.doc_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上下行部分Site Name / LocationEnter the literal name of the site where the earth station is located up to a maximum of 40 characters (18 for country data files)Example input for country data files (18 characters maximum)LiverpoolExample input for all other forms (40 characters maximum)Liverpool, Merseyside, England.基站名称输入基站所处位置的名称,最多40个字母。国家数据文件名举例(最多18个字母):liverpool其他格式输入举例:Liverpool, Merseyside, England.Site LatitudeEnter the latitude of the site where the earth station is located. This must be entered in decimal degrees with the suffix N for north and S for South. No spaces are allowed. Examples 53.33N or 27.89S Important Note:When entering data into country data files latitudes are required in degrees and minutes format as obtained from maps and atlases. In this case the fractional part represents the number of minutes and cannot exceed 59. In all other cases input in decimal degrees are assumed. A conversion facility is provided under the calculate menu.基站纬度输入地面站的纬度。必须以小数后跟N或S表示。不能输入空格。比如53.33N或27.89S 注意事项当输入国家数据文件时纬度需要以地图上的度和分为单位。这种情况下,小数部分为分的表示,不能超过59。在其他情况下,都是以度来表示的。Caculate菜单中有一个转换工具。Site LongitudeEnter the longitude of the site where the earth station is located. This must be entered in decimal degrees with the suffix W for west and E for East. No spaces are allowed. Examples 3.00W or 29.79E Important Note:When entering data into country data files longitudes are required in degrees and minutes format as obtained from maps and atlases. In this case the fractional part represents the number of minutes and cannot exceed 59. In all other cases input in decimal degrees are assumed. A conversion facility is provided under the calculate menu.基站经度输入基站的经度。必须以小数后跟E或W表示。不能输入空格。比如3.00W 或29.79E 注意事项当输入国家数据文件时纬度需要以地图上的度和分为单位。这种情况下,小数部分为分的表示,不能超过59。在其他情况下,都是以度来表示的。Caculate菜单中有一个转换工具。Altitude of SiteEnter the altitude of the earth station above sea level. This is primarily used in the calculation of rain attenuation and atmospheric absorption. The units are kilometres.5.0 km is the maximum altitude allowed. Enter zero if you will prefer a slightly pessimistic worst case link budget calculation.基站海拔输入基站的海拔。这主要是用来计算雨衰和大气吸收值,单位是千米。最大允许输入的海拔为5km。如果需要比较悲观链路预算可以输入0。Frequency频率Enter the centre frequency of the carrier in GHz. For the uplink, typical values are around 6GHz and 14GHz for C and Ku band respectively. For the downlink, values of 4GHz and 12GHz are typical. The accepted range is 1GHz to 50GHz输入上行载波的中心频率,以Ghz为单位。典型C波段和Ku波段的值为6GHz和14GHz。下行的典型频率为4Ghz和12GHz。可输入的范围为1Ghz到50GHz。PolarizationThis is simply the polarization system adopted by the wanted satellite transponder and is either linear (ie vertical & horizontal) or circular. Enter the letter V for vertical polarization, H for horizontal polarization or C for circular polarization.极化这就是所需卫星转发器的极化方式,可以选线性(垂直和水平)或圆极化。输入“V”为垂直极化,“H”为水平极化,“C”为圆极化。Signal AvailabilityDepending on your system design requirements a choice of signal availability should be specified. For typical domestic satellite TV systems, a figure of 99.5% availability is normally sufficient. In fact most packaged fixed dish systems are designed around this figure. For SMATV you may require a higher figure of 99.9% and cable head even higher. The upper limit provided is 99.999% but this level of performance is rarely necessary or even achievable. The parameter is used in calculating an appropriate fade margin based on the rain-rate statistics for the site. If you like to work with worst month statistics a conversion to average year signal availability is provided under the Calculate menu.With link budgets using uplink power control systems a higher availability is often specified for the uplink than the downlink.信号可用度(年平均)根据你的系统设计需求,信号可用度应该是确定的。典型的国内TV系统,这个数到99.5%为宜。实际上大多集成的碟形天线系统按照这个数字设计。SMATV(卫星公共接收电视)需要高到99.9%的可用度,电视终端机则更高。最高可以设为99.999%但是这种程度的可用度不常用也不可行。这个数值经常用来计算合适的雨衰。如果你愿意通过“worstmonth最糟糕的一个月”数值转换为年平均信号可用度,可以通过Calculatec菜单下的工具进行换算。如果链路使用上行功率控制系统,经常要设置一个较高的系统可用度。Antenna ApertureAntenna aperture is normally taken as the overall diameter of a parabolic dish, the major dimension if an offset focus antenna. Units are always metric (in metres) to conform to international engineering practice. The lower limit handled is 0.2 metres and the highest 50 metres.天线口径通常是抛物线天线的直径,偏馈天线的主要直径。单位都是米。最少为0.2米,最大为50米。Antenna EfficiencyAntenna efficiency is the amount of incident signal actually collected by the dish and feed, expressed as a percentage. Quality of construction, signal blockage by head units, and method of feed affects this parameter. Most antennas have efficiencies of between 60% and 70%. If you do not know the efficiency of the antenna then enter 60% as a worst case value.With link budget and dual feed forms, the value entered may be prefixed with a + character so the value will be interpreted as a gain, in dBi, rather than efficiency.天线效率天线效率就是入射信号呗反射面和馈源收集到得数量,表示为一个百分比。建设施工质量,前馈部分的遮挡还有馈源材料会影响这项参数。多数天线的效率在60-70%之间。如果你不知道则输入60%作为最悲观估计在链路预算和双馈形式中,这个值必须加一个“+”前缀以便程序将其解读为增益,以dBi为单位,而不是天线效率。Coupling lossThis parameter is the total loss due to the insertion of waveguide components and polarizers. Values are expected in dB and are typically in the order of 0.3dB. You should add all the insertion losses of waveguide components, such as OMTs and polarizers, that you intend to use.耦合衰减这个数值是波导原件、偏振器引起的一切衰减。单位是dB,典型值为0.3dB。你应该输入整体的波导元器件的衰减,如OMT和偏振器。Antenna misspointing lossThis parameter allows for the pointing loss between the ground station antenna and the satellite antenna. It is unlikely in practice that the antenna will be targeted exactly due to initial installation errors, factors such as the stability due to wind and the station keeping accuracy of the satellite. A large antenna, having a narrow beamwidth and being relatively unstable in wind inherit a disadvantage over a small one.A typical allowance for mispointing is 0.3 dB. This may need to be increased to 0.5dB for very large antennas particularly in windy areas.天线偏离损耗这个数值是对星不准引起的地面站和卫星间的损耗。实际中因为初始安装误差,很难将天线完全对准卫星,如风稳和地面保持精度等因素。大型天线发射窄波束时会相对于小天线更加不稳定。典型值为0.3dB。大型天线处于多风地带的话可能需要加到0.5dB.LNB Noise Figure (LNB Noise Temperature)The default interpretation of this input parameter is Noise Figure. However, if you prefix the input value with a + character it will be automatically interpreted as a Noise Temperature instead.It is conventional to quote the noise figure of an LNB in dB for Ku and Ka bands and the equivalent noise temperature in Kelvin for S and C bands. It is usually more difficult and expensive to achieve low noise figures the higher the frequency. For Ku-band low cost LNBs are in the range 0.8dB to 1.0dB or 30K for C band.Note: We use the term LNB in the generic sense here, LNA, LNC etc is equally valid.LNB噪声默认的解读法是读为噪声因数,但如果在数值前加上“+”号则程序将其读为噪声温度。通常使用噪声因数表示Ku和Ka波段的LNB噪声,噪声温度表示。频率越高,通常来讲就越难以达到很低的噪声。比如Ku波段比较便宜的LNB噪声都是在0.8-1.0dB,C波段的通常为30K。Antenna noise temperatureA value for the antenna noise temperature is often quoted in manufacturers specifications. The total noise temperature of the antenna depends mainly on the following factors:1) Sky Noise The total antenna noise, Tant = Tsky+Tgnd. The sky noise, Tsky, consists of two main components, absorption and the background big bang radiation (2.7K). Since the atmosphere is an absorbing medium it must be a noise source so sky noise increases with decreasing elevation due to the longer path through the atmosphere.2) Ground Noise The dominant contribution to antenna noise at low elevations is ground noise pick up through side lobes. Noise temperature increases as the elevation angle decreases since the antenna will pick up more ground noise due to side lobes intercepting the ground (diffraction effects at the antenna rim). This may be reduced by various methods of feed illumination and the dish design itself. A deep dish picks up less ground noise at lower elevations than do shallow ones also prime focus mounted head units will add to noise since it is seen at the same temperature as the Earth. Estimating Antenna Noise TemperatureSince antenna noise temperature has so many variable factors, an estimate is perhaps the best we can hope for. In the absence of a specific manufacturer supplied figure, a reasonable estimate may be obtained by selecting Calculate|Estimate Antenna Noise Temperature from the menu.天线噪声温度天线的噪声温度通常标注在厂家的说明书中。天线的总噪声主要受以下几个方面影响:1) 天电噪声。天线的总噪声=天电噪声+地电噪声。天天电噪声,Tsky,包含两部分,空气吸收和大爆炸背景辐射。因为大气是一种(电磁波)吸收媒介所以肯定会有噪声。所以海拔降低大气噪声就会增加,因为在电磁波在大气中传播的更远。2) 大地噪声。在低仰角的情况下对天线噪声影响最大的是旁瓣吸收的大地噪声。天线仰角降低,大地噪声就升高(天线的衍射效果)。它有可能通过馈源和反射面的特殊设计而减小。比较凹的天线反射面会减少大地噪声,而天线头部分也会增加噪声,因为它也可以看作和大地有一样的噪声。估算天线噪声温度因为天线噪声温度受很多因素影响,我们只好算出一个估计值。如果没有厂家提供的参数,使用Calculate-Estimate Antenna Noise Temperature进行计算。Adjacent Channel Interference C/ACI相邻信道干扰Enter a value for the carrier to adjacent-carrier interference noise ratio C/ACI in dB. This parameter specifies the expected interference level with respect to the wanted carrier. A typical value to enter for either uplink or downlink is between 24 and 30dB. Some link programs do not use this parameter so if you wish to void it enter 60dB or more. Note that the higher this value is in dB, the lower the interference. 输入一个相邻信道干扰噪声C/ACI,以dB为单位。这个参数指定一个所需载波的干扰程度。上行和下行的典型值在24-30dB之间。很多工程不需要这些参数,如果不希望考虑它,输入60dB以上的值。注意这个值越高表示干扰越小。Adjacent Satellite Interference C/ASI相邻卫星干扰Enter a value for the carrier to adjacent satellite interference noise ratio due to interfering signals to/from adjacent satellites in dB. This parameter specifies the expected interference noise with respect to the wanted carrier.A typical value to enter here for either uplink or downlink is between 18 and 30dB. Note that the higher this value is in dB, the lower the interference.输入一个相邻卫星干扰噪声C/ASI,以dB为单位。这个参数指定一个所需载波的干扰程度。上行和下行的典型值在18-30dB之间。注意这个值越高表示干扰越小。Cross Polarization Interference C/XPI极化干扰Enter a value for the carrier to cross polarization interference noise ratio C/XPI in dB. This parameter specifies the expected interference level with respect to the wanted carrier. A typical value to enter here for either uplink or downlink is between 24 and 30dB. Note that the higher this value is in dB, the lower the interference.输入一个交叉极化干扰噪声C/XPI,以dB为单位。这个参数指定一个所需载波的干扰程度。上行和下行的典型值在24-30dB之间。注意这个值越高表示干扰越小。Earth Station HPA Output Back-Off地球站高功放输出回退To reduce uplink interference it is customary to back off the output of the earth station HPA. This trade-off leads to a higher HPA power capability being required. Typical values range from 1 to 7dB.为了防止上行的噪声一般要对地球站的高功放进行回退。这种权衡的做法会导致需求功放的功率变大。典型值在1-7dB之间。Number of HPA Carriers高功率放大器载波数量Enter the number of carriers simultaneously transmitted by the uplink earth station HPA. Normally this is set to 1 unless you need to size the HPA for multiple carriers. This has no effect other than to increase the HPA power requirement.输入地球上行功率放大器同时传输的载波数量。如果不需要同时传多个载波的话就输入1。这个数值只会影响功率放大器的功率需求。HPA Intermodulation Interference C/IM功放交调干扰Enter a value for the intermodulation interference expected from the uplink earth station HPA. This parameter is sometimes neglected in many programs. If you wish to make this parameter effectively void enter 60dB or more. Note that the higher this value is in dB, the lower the interference level.输入一个上行功放交调干扰值,以dB为单位。很多工程不需要这些参数,如果不希望考虑它,输入60dB以上的值。注意这个值越高表示干扰越小。Uplink Power Control / Manual Power Boost上行功率控制/手动功率控制Uplink Power Control (UPC) also known as Dynamic Carrier Control is used to compensate for instantaneous rain attenuation on the uplink. Enter the dynamic range of the system here. If UPC is not used or site diversity plans are in operation you can enter zero here. UPC systems usually require a high HPA power capability.上行功率控制(UPC)又叫动态载波控制,是用来抵消上行偶尔的雨衰。输入动态的系统变化值。UPC系统需要更大的功放功率。雨衰Rain modelsHere you can select the rain model to use. Check the checkbox relevant to the model you wish to use.The ITU/DAH rain model is recommended since it is probably the most accurate model to date. The Crane models are also provided if you prefer them. You do not need to consult rainzone maps with the latter, the zones are determined automatically.The ITU/DAH model employs a 1.5*1.5 degree lat/long grid of R0.01 rainfall data and uses bilinear interpolation to achieve an improved estimate for a location from its grid neighbours.Although not normally necessary, a better accuracy may result with the ITU/DAH model if a localized R0.01 value is obtained. To use this, check the checkbox labelled ITU mm/h then enter your locally obtained R0.01 value into the input field below it. A value of zero may be input if you wish to temporarily remove any rain effects from the budget. Note: This option is not available for items under the Graphs and Tables menus.Dual Fade Checkbox (only present on some link budget forms)Where uplink and downlink stations are separated by several km, it is not normally assumed there is a rainstorm on the uplink and downlink simultaneously as this is statistically unlikely. However, if the uplink and downlink are in the same city or an area which may be covered by a large tropical storm, you may like to check this checkbox so rain attenuation is calculated both on the uplink AND downlink simultaneously. In general, Ku band is not so suitable as C band for tropical regions due to high rain attenuation.你可以在这里选择雨衰模型。选择相关的复选框即可。推荐使用ITU/DAH雨衰模型,因为它应该是最精确的模型。Crane模型也可以使用,这种模型你无须寻找降雨地图,系统会自动计算。ITU/DAH使用1.5*1.5经纬度的方格来统计各地区的R0.01降雨数据,而且使用双线性插值法来得到更精确的估计。虽然通常不必要,但是如果有相关r0.01数据的话ITU/DAH是更精确的。点选ITU mm/h来手动输入R0.01值。如果不想计算雨衰值可以输入0.注:这个值是不能在Graph或者Table里面查的。双重雨衰选项(只有一部分链路预算需要)如果上下行站相距几千米,一般上行下行同时下雨的情况为统计上的不可能。但是如果上下行在同一个城市或者地区,可能受同一个降雨云影响,你可能需要计算上行和下行同时受到雨衰的影响的情况。因为雨衰,Ku波段总体来讲不如C波段适合热带地区的通信。卫星部分satelliteTransponder Type Radio Buttons转发器种类These radio buttons set the transponder type, which can be either a TWTA (Traveling Wave Tube Amplifier) or SSPA (Solid State Power Amplifier). The default is TWTA. This is used in determining typical values for output back-off and transponder intermodulation interference if the AUTO mode is selected.这个单选按钮设置转发器种类,可以是TWTA(Travelling Wave Tube Amplifier)或SSPA(Solid State Power Amplifier)。默认是TWTA。在AUTO模式下,它用来计算输出回退的典型值和转发器的交调干扰。Satellite Name卫星名称Enter the literal name of the target satellite up to a maximum of 40 characters. (18 for satellite data records)Example Astra 2a输入卫星名称,不超过40字符。(卫星文件记录不超过18个字符)如Astra 2aSatellite Longitude卫星经度Enter the longitude corresponding to the sub-satellite point of the satellite on the equator. This should be in decimal degrees with the suffix E for East and W for West. Examples 19.2E or 125.00W 输入该卫星赤道星下点的经度。这个值是10进制的小数,单位是度。如19.2E或125.00W。Satellite G/TEnter the Figure of Merit (G/T) of the on board satellite receiver in units of dB/K. This should be the value in the direction of the earth station. Values may be obtained from satellite operators or satellite directories in the form of G/T contour maps.输入卫星接收器的品质因数G/T,这个值应该是地球站地理位置所对应的那个值。它可以在卫星运营商的G/T等高线图那里得到。Satellite Saturation PFD(SFD)卫星饱和通量密度Enter the Saturation Flux Density (SFD) value, in dBW/m2, required to saturate the satellites transponder from the earth station. The program assumes this input value corresponds to a reference 0dB attenuator pad setting here. SFD can be thought of as the input sensitivity of the transponder where the more negative the value the higher the sensitivity. (Example: -89 dBW/m2)Some satellite operators do not supply SFD contour maps, in which case the SFD(effective) at a specific site may be deduced using the following simple expession:SFD(effective) = SFD(ref) - (G/T - G/T(ref)whereSFD(ref) and G/T(ref) can be any known pair of reference values such as beam peak or beam edge.When the transponder is operated in power limited mode for multi-carriers it is common practice for the satellite operator to set the attenuator pad to a nominal 10dB or 16dB to increase the number of carriers the transponder can support at the expense of earth station uplink power. The attenuator pad, commandable from the ground, affects all carriers sharing the transponder.Important Note: Some satellite operators specify the SFD at a nominal attenuator pad setting typically, 10dB or 16dB. You should always enter the SFD assuning the reference attenuator pad setting is 0dB here. The attenuator pad may be set separately to 10dB or 16dB within the program. You can, of course, set the SFD at any given attenuator pad setting but if you do, you must set the attenuator pad input field to 0dB. If in any doubt contact your satellite operator for SFD and attenuator pad settings.输入饱和通量密度(Saturation Flux Density)值,单位是dBW/m2,这个值是使卫星转发器达到饱和的通量密度。程序会认为这个值是对应衰减器为0dB情况。SFD可以看做一个输入的敏感度。这个值越小敏感度越高。有些卫星运营商不提供SFD等高线图,SFD可以由以下公式算出。SFD(effective) = SFD(ref) - (G/T - G/T(ref)SFD(ref) and G/T(ref)可以是任意一对值比如波束中心或者波束边缘值。 当转发器工作于功率限定模式的多载波模式,卫星运营商经常将衰减跳到10dB或16dB来增加支持的载波数,这会增大地球站上行的功率。衰减器可以在地球上控制来改变转发器支持的载波数。提示:有些运营商给的SFD数据是加了他们常用的衰减10dB、或16dB。但这里需要输入衰减为0的情况。衰减器10dB或者16dB是在程序的其他地方进行设置的。你也可以输入衰减器为任何dB的情况,但这是就要把衰减器设为0dB。如果对SFD和衰减有疑问,和你的卫星运营商联系。Satellite Attenuator Pad Setting卫星衰减器设置Enter the value of the attenuator pad setting in dB. This is set by the satellite operator for the transponder depending on its use. This program assumes you have entered the SFD corresponding to an attenuator setting of 0dB and adds this value to it.Example: Suppose the SFD, with 0dB attenuator pad setting is given as -90dBW/m2. The overall SFD with the 10dB attenuator pad included is, -90dBW/m2 +10dBW/m2 = -80dBW/m2) Important note: If you have already allowed for a nominal attenuator pad setting in the SFD input field you must set this parameter to 0dB otherwise you could severely over dimension the link.输入卫星衰减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论