




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章一、直线的倾斜角与斜率1、倾斜角的概念:(1)倾斜角:当直线与x轴相交时,取x轴作为基准,x轴正向与直线向上方向之间所成的角a叫做直线的倾斜角。 (2)倾斜角的范围:当与x轴平行或重合时,规定它的倾斜角a为0因此0a180。2、直线的斜率 (1)斜率公式:K=tana(a90) (2)斜率坐标公式:K= (x1x2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当a=0时,k=0;当0a90时,k0,且a越大,k越大;当a=90时,k不存在;当90a180时,k0,且a越大,k越大。二、两直线平行与垂直的判定1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 2、两直线垂直的判定: (1)一条直线的斜率为0,另一条直线的斜率不存在,则这两直线垂直; (2)如果两条直线、的斜率都存在,且都不为0,则 k1k2=1已知直线经过点,且斜率为,则方程为直线的点斜式方程.直线与轴交点的纵坐标叫做直线在轴上的截距(intercept).直线叫做直线的斜截式方程.已知直线上两点且,则通过这两点的直线方程为,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式已知直线与轴的交点为,与轴的交点为,其中,则直线的方程叫做直线的截距式方程.注意:直线与轴交点(,0)的横坐标叫做直线在轴上的截距;直线与y轴交点(0,)的纵坐标叫做直线在轴上的截距.关于的二元一次方程(A,B不同时为0)叫做直线的一般式方程,简称一般式(general form)注意:直线一般式能表示平面内的任何一条直线 直线名称已知条件直线方程使用范围点斜式k存在斜截式k存在两点式(截距式已知平面上两点,则.特殊地:与原点的距离为.:已知点和直线,则点到直线的距离为:.已知两条平行线直线,则与的距离为1 两直线的交点问题.一般地,将两条直线的方程联立,得方程组,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行2 直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决.3. 坐标法的步骤:建立适当的平面直角坐标系,用坐标表示有关的量;进行有关的代数运算;把代数运算结果“翻译”成几何关系.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;(2)设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有;注:如果圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。 (3)过圆上一点的切线方程:圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 (课本命题)圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广)4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。选修内容:椭圆把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse)其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距即当动点设为时,椭圆即为点集椭圆的简单几何性质 范围:由椭圆的标准方程可得,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),;椭圆的第二定义当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率对于椭圆,相应于焦点的准线方程是根据对称性,相应于焦点的准线方程是对于椭圆的准线方程是可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义由椭圆的第二定义可得:右焦半径公式为;左焦半径公式为椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。证明:设,由焦半径公式可知:,在中, = 性质三:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得: 命题得证。双曲线把平面内与两个定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线(hyperbola)其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距即当动点设为时,双曲线即为点集双曲线的简单几何性质 范围:由双曲线的标准方程得,进一步得:,或这说明双曲线在不等式,或所表示的区域;对称性:由以代,以代和代,且以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;渐近线:直线叫做双曲线的渐近线;离心率: 双曲线的焦距与实轴长的比叫做双曲线的离心率()双曲线第二定义:当动点M(x,y) 到一定点F(c,0)的距离和它到一定直线的距离之比是常数时,这个动点M(x,y)的轨迹是双曲线。其中定点F(c,0)是双曲线的一个焦点,定直线叫双曲线的一条准线,常数e是双曲线的离心率。双曲线上任一点到焦点的线段称为焦半径。椭圆定义1到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2与定点和直线的距离之比为定值e的点的轨迹.(0e0)(0)参数方程范围axa,bybaxa,byb中心原点O(0,0)原点O(0,0)顶点(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0), (0,b) , (0,b)对称轴X轴,y轴;长轴长2a,短轴长2bX轴,y轴;长轴长2a,短轴长2b焦点F1(c,0), F2(c,0)F1(c,0), F2(c,0)焦距2c (其中c=)2c (其中c=)离心率准线x=x=焦半径通径名 称椭 圆双 曲 线图 象定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆。即 当22时,轨迹是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车冷却风扇项目发展计划
- 2019-2025年初级管理会计之专业知识综合卷押题练习试题A卷含答案
- 2019-2025年一级注册建筑师之建筑技术设计作图题模拟题库及答案下载
- 2025年中国富马酸比索洛尔项目投资计划书
- 狗狗课件教学课件
- 2025年全断面掘进机项目发展计划
- 某品牌展示设计案例分析
- 肥城农机考试试题及答案
- 幼师培训考试试题及答案
- 地税专业考试试题及答案
- xx学校研学旅行活动告家长书
- 医院检验科实验室生物安全管理委员会及工作职责
- 艾里逊自动变速箱针脚图PPT通用课件
- 圣地非遗-鲁锦纹样特征
- 自动扶梯标准安装施工方案
- 化探取样规范
- 起重机械交叉作业安全措施
- MBR运行管理手册(共21页)
- 生态动力素讲解话术
- 五年级家长会英语老师发言课件.ppt
- Oracle-BI安装及使用指南(linux)(精编版)
评论
0/150
提交评论