




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题14 导数的应用(2)研究函数的极值与最值一、【知识精讲】函数的单调性与导数的关系函数yf(x)在某个区间内可导,则:(1)若f(x)0,则f(x)在这个区间内单调递增;(2)若f(x)0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.二、【典例精练】考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例11】 已知函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(2)D.函数f(x)有极大值f(2)和极小值f(2)【答案】D【解析】由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值.【解法小结】由图象判断函数yf(x)的极值,要抓住两点:(1)由yf(x)的图象与x轴的交点,可得函数yf(x)的可能极值点;(2)由导函数yf(x)的图象可以看出yf(x)的值的正负,从而可得函数yf(x)的单调性.两者结合可得极值点.角度2已知函数求极值【例12】 (2015山东高考)设函数,其中. ()讨论函数极值点的个数,并说明理由; ()若成立,求的取值范围.【答案】(I):当时,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)的取值范围是.【解析】函数的定义域为令,(1)当时,在上恒成立所以,函数在上单调递增无极值;(2)当时,当时,所以,函数在上单调递增无极值;当时,设方程的两根为因为所以,由可得:(3)当时,由可得:当时,函数单调递增;当时,函数单调递减;因此函数有一个极值点综上:当时,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)由(I)知,(2)当时,由,得所以,函数在上单调递增,又,所以,时,符合题意;(3)当时,由,可得所以时,函数单调递减;又所以,当时,不符合题意;(4)当时,设因为时,所以在上单调递增,因此当时,即:可得:当时,此时,不合题意.综上所述,的取值范围是【解法小结】运用导数求可导函数yf(x)的极值的一般步骤:(1)先求函数yf(x)的定义域,再求其导数f(x);(2)求方程f(x)0的根;(3)检查导数f(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3已知函数的极(最)值求参数的取值【例13】 (2018北京卷)设函数f(x)ax2(4a1)x4a3ex.若曲线yf(x)在点(1,f(1)处的切线与x轴平行,求a;若f(x)在x2处取得极小值,求a的取值范围.【解析】因为f(x)ax2(4a1)x4a3ex,所以f(x)ax2(2a1)x2ex.f(1)(1a)e.由题设知f(1)0,即(1a)e0,解得a1.此时f(1)3e0.所以a的值为1.f(x)ax2(2a1)x2ex(ax1)(x2)ex.若a,则当x时,f(x)0.所以f(x)在x2处取得极小值.若a,则当x(0,2)时,x20,ax1x10.所以2不是f(x)的极小值点.综上可知,a的取值范围是.【解法小结】已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.考点二利用导数求函数的最值【例2】(2018全国卷II)已知函数f(x)=exax2(1)若a=1,证明:当x0时,f(x)1;(2)若f(x)在(0,+)只有一个零点,求a【解析】证明:(1)当a=1时,函数f(x)=exx2则f(x)=ex2x,令g(x)=ex2x,则g(x)=ex2,令g(x)=0,得x=ln2当(0,ln2)时,h(x)0,当(ln2,+)时,h(x)0,h(x)h(ln2)=eln22ln2=22ln20,f(x)在0,+)单调递增,f(x)f(0)=1,解:(2),f(x)在(0,+)只有一个零点方程exax2=0在(0,+)只有一个根,a=在(0,+)只有一个根,即函数y=a与G(x)=的图象在(0,+)只有一个交点G,当x(0,2)时,G(x)0,当(2,+)时,G(x)0,G(x)在(0,2)递增,在(2,+)递增,当0时,G(x)+,当+时,G(x)+,f(x)在(0,+)只有一个零点时,a=G(2)=【解法小结】1.利用导数求函数f(x)在a,b上的最值的一般步骤:(1)求函数在(a,b)内的极值;(2)求函数在区间端点处的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.考点三利用导数求解最优化问题【例3】 在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).(1)求y关于v的函数关系式;(2)若cv15(c0),求当下潜速度v取什么值时,总用氧量最少.【解析】(1)由题意,下潜用时(单位时间),用氧量为(升),水底作业时的用氧量为100.99(升),返回水面用时(单位时间),用氧量为1.5(升),因此总用氧量y9(v0).(2)y,令y0得v10,当0v10时,y10时,y0,函数单调递增.若c10 ,函数在(c,10)上单调递减,在(10,15)上单调递增,当v10时,总用氧量最少.若c10,则y在c,15上单调递增,当vc时,这时总用氧量最少.【解法小结】1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式yf(x),并确定其定义域;(2)求函数的导数f(x),解方程f(x)0;(3)比较函数在区间端点和f(x)0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.【思维升华】1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值.【易错注意点】1.求函数的极值、函数的优化问题易忽视函数的定义域.2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.三、【名校新题】1. (2019辽宁鞍山一中模拟)已知函数f(x)x33x1,在区间3,2上的最大值为M,最小值为N,则MN()A20B18C3 D0【答案】A【解析】f(x)3x233(x1)(x1),f(x)在(,1)和(1,)上单调递增,在(1,1)上单调递减,又f(3)19,f(1)1,f(1)3,f(2)1,M1,N19,MN1(19)20.2. (2019湖北襄阳四校联考)函数f(x)x2xln x3x的极值点一定在区间()A(0,1)内 B(1,2)内C(2,3)内 D(3,4)内【答案】B【解析】函数的极值点即导函数的零点,f(x)xln x13xln x2,则f(1)10,由零点存在性定理得f(x)的零点在(1,2)内,故选B.3. (2019皖南八校联考)已知函数f(x)x3bx2cxbc在x1处有极值,则b()A1 B1C1或1 D1或3【答案】A【解析】f(x)x22bxc,因为f(x)在x1处有极值,所以解得故选A.4. (2019广州高中综合测试)已知函数f(x)x3ax2bxa2在x1处的极值为10,则数对(a,b)为()A(3,3) B(11,4)C(4,11) D(3,3)或(4,11)【答案】C【解析】f(x)3x22axb,依题意可得即消去b可得a2a120,解得a3或a4,故或当时,f(x)3x26x33(x1)20,这时f(x)无极值,不合题意,舍去,故选C.5.(2019安庆二模)已知函数f(x)2ef(e)ln x(e是自然对数的底数),则f(x)的极大值为()A.2e1 B.C.1 D.2ln 2【答案】D【解析】由题意知,f(x),f(e)2f(e),则f(e).因此f(x),令f(x)0,得x2e.f(x) 在(0,2e)上单调递增,在(2e,)上单调递减.f(x)在x2e处取极大值f(2e)2ln(2e)22ln 2.6.(2019郑州质检)若函数yf(x)存在n1(nN*)个极值点,则称yf(x)为n折函数,例如f(x)x2为2折函数.已知函数f(x)(x1)exx(x2)2,则f(x)为()A.2折函数 B.3折函数C.4折函数 D.5折函数【答案】C【解析】f(x)(x2)ex(x2)(3x2)(x2)(ex3x2),令f(x)0,得x2或ex3x2.易知x2是f(x)的一个极值点,又ex3x2,结合函数图象,yex与y3x2有两个交点.又e23(2)24.函数yf(x)有3个极值点,则f(x)为4折函数.7. (2019江西阶段性检测)已知函数yax在x1处取得极值,则a_.【答案】2因为ya,所以当x1时,a20,所以a2,经验证,可得函数y2x在x1处取得极值,因此a2.8. (2019“超级全能生”高考全国卷26省联考)已知函数f(x)x3x22xt在区间(0,)上既有极大值又有极小值,则t的取值范围是_【答案】【解析】f(x)tx23x2,由题意可得f(x)0在(0,)上有两个不等实根,即tx23x20在(0,)有两个不等实根,所以解得0t.9.若函数f(x)2x2ln x在其定义域的一个子区间(k1,k1)内存在最小值,则实数k的取值范围是_.【答案】【解析】因为f(x)的定义域为(0,),又因为f(x)4x,所以由f(x)0解得x,由题意得解得1k0,当t(2,8)时,V(t)0).当a0时,f(x)0在(0,)上恒成立,即函数在(0,)上单调递增,此时函数在定义域上无极值点;当a0时,当x时,f(x)0,当x时,f(x)0时,函数yf(x)有一个极大值点,且为x.12.(2018天津卷选编)设函数f(x)(xt1)(xt2)(xt3),其中t1,t2,t3R,且t1,t2,t3是公差为d的等差数列.(1)若t20,d1,求曲线yf(x)在点(0,f(0)处的切线方程;(2)若d3,求f(x)的极值.【解析】(1)由已知,得f(x)x(x1)(x1)x3x,故f(x)3x21.因此f(0)0,f(0)1,又因为曲线yf(x)在点(0,f(0)处的切线方程为yf(0)f(0)(x0),故所求切线方程为xy0.(2)由已知得f(x)(xt23)(xt2)(xt23)(xt2)39(xt2)x33t2x2(3t9)xt9t2.故f(x)3x26t2x3t9.令f(x)0,解得xt2,或xt2.当x变化时,f(x),f(x)的变化情况如下表:所以函数f(x)的极大值为f(t2)()39()6;函数f(x)的极小值为f(t2)()396.13.设f(x)xln xax2(2a1)x(常数a0).(1)令g(x)f(x),求g(x)的单调区间;(2)已知f(x)在x1处取得极大值,求实数a的取值范围.【解析】(1)由f(x)ln x2ax2a,可得g(x)ln x2ax2a,x(0,).所以g(x)2a.又a0,当x时,g(x)0,函数g(x)单调递增,当x时,g(x)0,函数g(x)单调递减.函数yg(x)的单调递增区间为,单调递减区间为.(2)由(1)知,f(1)0.当0a1,由(1)知f(x)在内单调递增,可得当x(0,1)时,f(x)0.所以f(x)在(0,1)内单调递减,在内单调递增.所以f(x)在x1处取得极小值,不合题意.当a时,1,f(x)在(0,1)内单调递增,在(1,)内单调递减,所以当x(0,)时,f(x)0,f(x)单调递减,不合题意.当a时,00,f(x)单调递增,当x(1,)时,f(x)0,f(x)单调递减.所以f(x)在x1处取极大值,符合题意.综上可知,实数a的取值范围为14.(2019广东五校联考)已知函数f(x)axln x,其中a为常数.(1)当a1时,求f(x)的最大值;(2)若f(x)在区间(0,e上的最大值为3,求a的值.【解析】(1)易知f(x)的定义域为(0,),当a1时,f(x)xln x,f(x)1,令f(x)0,得x1.当0x0;当x1时,f(x)0.f(x)在(0,1)上是增函数,在(1,)上是减函数.f(x)maxf(1)1.当a1时,函数f(x)在(0,)上的最大值为1.(2)f(x)a,x(0,e,.若a,则f(x)0,从而f(x)在(0,e上是增函数,f(x)maxf(e)ae10,不合题意.若a0得a0,结合x(0,e,解得0x;令f(x)0得a0,结合x(0,e,解得xe.从而f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省湘潭市雨湖区2024-2025学年四年级下学期期末考试语文试题(无答案)
- 江苏省南京市29中学2026届英语九年级第一学期期末预测试题含解析
- 2026届江苏省南京市临江高级中学高三上学期一模物理试题(无答案)
- 2026届内蒙古自治区通辽市化学九上期中调研模拟试题含解析
- 2026届辽宁省大连市名校英语九年级第一学期期末检测试题含解析
- 广西玉林市北流市2026届化学九上期中监测试题含解析
- 北京海淀人大附2026届九上化学期中考试试题含解析
- 做个有缘人第9课【老师您好】 课件2025-2026学年北师大版(2015)初中心理健康七年级全一册
- 2026届北京顺义化学九上期中检测试题含解析
- 商铺租赁合同签订中的租赁期限与续约规定
- 2025-2026学年浙教版小学劳动技术一年级上册教学计划及进度表
- 本科教学合格评估汇报
- 挖机线路改造方案(3篇)
- 2025年江苏无锡学院招聘高层次人才(长期)笔试模拟试题及参考答案详解一套
- 心电图监护中患者护理查房
- 胃肠间质瘤诊疗指南2025年版
- 耳石症的诊断与治疗
- 2025年民政行业技能鉴定考试-殡仪服务员考试历年参考题库含答案解析(5套共100道单选题合辑)
- 医务人员职业道德与服务礼仪培训
- 煤炭洗选技术课件教学
- 《西门子触摸屏组态与应用》课件
评论
0/150
提交评论