江西省樟树中学等九校2019届高三数学联合考试试题文(含解析).docx_第1页
江西省樟树中学等九校2019届高三数学联合考试试题文(含解析).docx_第2页
江西省樟树中学等九校2019届高三数学联合考试试题文(含解析).docx_第3页
江西省樟树中学等九校2019届高三数学联合考试试题文(含解析).docx_第4页
江西省樟树中学等九校2019届高三数学联合考试试题文(含解析).docx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省樟树中学等九校2019届高三联合考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1.已知集合,则等于( )A. B. C. D. 【答案】A【解析】【分析】利用一元二次不等式的解法化简集合,再利用交集的定义求解即可.【详解】因为,所以集合,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.已知为虚数单位,复数,且,则实数( )A. -4B. 4C. D. 2【答案】C【解析】【分析】先利用复数乘法的运算法则化简复数,再利用复数模的公式求解即可.【详解】复数,且,所以,解得,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.某兄弟俩都推销某一小家电,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如下图所示,已知弟弟的销售量的平均数为34,哥哥的销售量的中位数比弟弟的销售量的众数大2,则的值为( )A. 5B. 13C. 15D. 20【答案】B【解析】【分析】利用平均数、众数、中位数的定义,根据茎叶图中的数据求出的值,从而可得结果 .【详解】根据茎叶图中的数据知,弟弟的众数是34 ,则哥哥的中位数是,解得,又,解得,故选B.【点睛】本题考查了利用茎叶图求众数、中位数和平均数的应用问题,是基础题.(1)中位数,如果样本容量是奇数中间的数就是中位数,如果样本容量为偶数中间两位数的平均数就是中位数;(2)众数是一组数据中出现次数最多的数据;(3)平均数是样本数据的算数平均数 .4.已知,且,则( )A. B. C. D. 【答案】D【解析】【分析】利用诱导公式化简,再根据同角三角函数的关系求解即可.【详解】,因为,且,所以,故选D.【点睛】本题主要考查同角三角函数之间的关系以及诱导公式的应用,属于中档题. 同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.5.已知双曲线与抛物线有共同的焦点,且点到双曲线渐近线的距离等于1,则双曲线的方程为( )A. B. C. D. 【答案】A【解析】【分析】由抛物线方程求出焦点坐标,可得,求出渐近线方程,利用点到直线距离公式列关于的方程,解方程组即可得到结果.【详解】抛物线的焦点坐标为,可得双曲线的焦点为,化为 ,得,双曲线的一条渐近线方程为,由点到双曲线渐近线的距离等于1,得 , 即,又 ,即,联立解得,双曲线的方程为,故选A .【点睛】本题主要考查抛物线、双曲线的方程及简单性质,是中档题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.6.已知定义在上的奇函数满足,且当时,则A. -18B. 0C. 18D. 不能确定【答案】D【解析】【分析】由,可得函数是周期为6的周期函数,则 ,由,再由奇偶性可得,从而可得结果.【详解】函数滿足,则函数是周期为6的周期函数,则 ,由,又因为函数为奇函数,所以 ,所以,故选B.【点睛】本题考查函数奇偶性、周期性的性质以及应用,属于中档题. 函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7.函数f(x)=sin(x)(其中|的图象如图所示,为了得到y=sinx的图象,只需把 的图象上所有点A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】D【解析】【分析】由函数的最值求出,由周期求出,由五点法作图求出的值,可得函数的解析式,再利用的图象变換规律,得出结论.【详解】由函数(其中的部分图象可得,,求得,再根据五点法作图可得,故把的图象向右平移个长度单位,可得的图象,故选A.【点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质以及图象的平移法则,属于中档题.利用最值求出 ,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.8.某几何体的三视图如图所示,则该几何体外接球表面积为( )A. B. C. D. 【答案】C【解析】【分析】画出几何体的直观图,利用底面的外心和高的一半求得球的半径,由此求得球的表面积.【详解】画出几何体的直观图如下图所示,设球心为,底面等边三角形的外心为,由三视图可知,设球的半径为,则,故球的表面积为,故选C.【点睛】本小题主要考查由三视图还原为原图,考查几何体外接球的有关计算,考查数形结合的数学思想方法,考查空间想象能力,属于中档题.要找到几何体外接球的球心,主要根据几何体的结构,利用球心到球面上的点的距离相等,通过解直角三角形来求解出半径,从而求得球的表面积或者体积.9.函数的图象大致为A. B. C. D. 【答案】A【解析】【分析】利用奇偶性排除选项;利用时,排除选项,从而可得结果.【详解】因为,所以函数是偶函数,其图象关于轴对称,排除选项;因为时,所以可排除选项,故选A.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10.在中,内角,所对应的边分别为,若,且,则( )A. B. C. 2D. 0【答案】D【解析】【分析】由,利用正弦定理可得,由求得,由两角和的余弦公式可得,由两角差的余弦公式可得,可得,从而可得结果.【详解】因为,所以,由正弦定理可得,即,因为 ,因为,所以,所以,又因为,所以,所以,故选D.【点睛】本题主要考查两角和与差的余弦公式,以及正弦定理的应用,属于难题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.11.如图所示,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,则A. B. C. D. 【答案】C【解析】【分析】根据要求解的比值是常数,可采用特殊点法求解,设在椭圆的左顶点,判断在的正半轴上,利用三角形面积公式求解即可【详解】由题意以及选项的值可知:是常数,所以可取为椭圆的左顶点,由椭圆的对称性可知,在的正半轴上,如图:则是由射影定理可得,可得 ,则,故选C .【点睛】本题考查椭圆的方程与简单性质的应用,以及选择题的解法,属于难题. 特殊法是“小题小做”的重要策略,用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法.12.若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:;其中为“柯西函数”的个数为A. 1B. 2C. 3D. 4【答案】B【解析】【分析】问题转化为存在过原点的直线与的图象有两个不同的交点,利用方程思想与数形结合思想,逐一判断即可.【详解】由柯西不等式得:对任意实数恒成立(当且仅当取等号),若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则函数在其图象上存在不同的两点,使得共线,即存在过原点的直线与的图象有两个不同的交点:对于 ,方程,即,不可能有两个正根,故不存在;对于,由图可知不存在;对于,由图可知存在;对于,由图可知存在,所以“柯西函数”的个数为2,故选B.【点睛】本题考查了新定义,以及转化思想与数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质二、填空题(本大题共4小题,共20.0分)13.已知平面向量,且,则_【答案】2【解析】【分析】根据,即可得出 ,由数量积的坐标运算即可求出 ,从而可求出,进而可得结果.【详解】, ,解得 ,所以,,故答案为.【点睛】本题主要考查向量垂直的坐标表示以及向量模的公式,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.14.已知变量,满足,则的取值范围是_【答案】【解析】【分析】由约束条件作出可行域,利用是可行域内的动点与定点连线的斜率,结合两点连线的斜率公式可得结果.【详解】由约束条件作出可行域如图,联立,解得,联立,解得,的几何意义是可行域内的动点与定点连线的斜率,的取值范围是,故答案为.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则:本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是乙或丁;妈妈:冠军一定不是丙和丁;孩子:冠军是甲或戊.比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是_【答案】丁【解析】【分析】假设冠军分别是甲、乙、丙、丁、戊,分别判断孩子、妈妈、爸爸的判断是否正确,即可得结果.【详解】若冠军是甲或戊,孩子与妈妈判断都正确,不合题意;若冠军是乙,爸爸与妈妈判断都正确,不合题意;若冠军是丙,三个人判断都不正确,不合题意;若冠军是丁,只有爸爸判断正确,合题意,故答案为丁.【点睛】本题主要考查推理案例,属于中档题.推理案例的题型是高考命题的热点,由于条件较多,做题时往往感到不知从哪里找到突破点,解答这类问题,一定要仔细阅读题文,逐条分析所给条件,并将其引伸,找到各条件的融汇之处和矛盾之处,多次应用假设、排除、验证,清理出有用“线索”,找准突破点,从而使问题得以解决.16.如图所示,三棱锥的顶点,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为_【答案】【解析】【分析】可先证明平面,设,则 ,可得三棱锥体积 ,利用基本不等式可得结果.【详解】过球心 ,又是边长为的等边三角形,,三角形是等腰直角三角形, ,又因为,在平面内,由线面垂直的判定定理可得平面 ,即平面,设, ,则三棱锥体积,当且仅当,即时取等号,故答案为.【点睛】本题考查了空间线面位置关系,及三棱锥体积计算,考查了最值问题,属于中档题. 解决立体中的最值问题一般有两种方法:一是利用空间、平面几何的有关结论来解决,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法解答.三、解答题(本大题共7小题,共82.0分)17.已知等差数列的前项和为,且满足的解集为.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)由韦达定理可得且,利用等差数列的通项公式和求和公式,列方程解得首项和公差,即可得到所求通项公式;(2)结合(1)求得,运用数列的分组求和,结合等比数列与等差数列的求和公式,即可得到所求和.【详解】(1)因为的解集为所以且,.(2)由(1)可得 ,.【点睛】本题主要考查等差数列的通项公式、求和公式以及等比数列的求和公式, “分组求和法”求数列前项和,属于中档题. 利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.18.已知斜三棱柱的侧面与底面垂直,侧棱与底面所成的角为,.(1)求证:平面平面;(2)若为的中点,求三棱锥的体积.【答案】(1)见解析;(2)【解析】【分析】(1)由面面垂直的性质可得,平面,由此得,结合利用线面垂直的性质定理可得平面,从而可得结果;(2)结合(1),侧棱与底面所成的角为,利用直角三角形的性质可得,点到平面的距离等于点到平面的距离的一半为1,结合“等积变换”,利用锥体的体积公式可得结果.【详解】(1)平面平面 平面平面,平面,又,平面,又 平面,平面平面.(2)由(1)可知,平面平面,则平面,又侧棱与底面所成的角为, ,点到平面的距离等于点到平面的距离的一半为1,则,.【点睛】本题主要考查线面垂直的判定定理及面面垂直的判定定理以及锥体的体积公式,属于难题题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.19.某商场营销人员进行某商品市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:反馈点数12345销量(百件)/天0.50.611.41.7(1)经分析发现,可用线性回归模型拟合当地该商品一天销量(百件)与该天返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:返还点数预期值区间(百分比)频数206060302010将对返还点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:回归方程,其中,;.)【答案】(1),返回6个点时该商品每天销量约为2百件;(2)(i),中位数的估计值为,(ii)见解析【解析】【分析】(1)求出变量的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程; 代入线性回归方程求出对应的的值,即可预测返回6个点时该商品每天销量;(2)利用分层抽样方法求得“欲望膨胀型”消费者与 “欲望紧缩型”消费者中抽取的人数,利用列举法得到所有的抽样情况共20种,其中至少有1名“欲望膨胀型”消费者的情况有16种,利用古典概型概率公式可得结果.【详解】(1)易知,则y关于x的线性回归方程为,当时,即返回6个点时该商品每天销量约为2百件.(2)设从“欲望膨胀型”消费者中抽取人,从“欲望紧缩型”消费者中抽取人,由分层抽样的定义可知,解得,在抽取的6人中,2名“欲望膨胀型”消费者分别记为,4名“欲望紧缩型”消费者分别记为,则所有的抽样情况如下:共20种,其中至少有1名“欲望膨胀型”消费者的情况有16种,记事件A为“抽出的3人中至少有1名欲望膨胀型消费者”,则.【点睛】本题主要考查回归方程的求法与应用、分层抽样与古典概型概率公式的应用,属于中档题. 利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次 . 这样才能避免多写、漏写现象的发生.20.在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形求椭圆的标准方程;过椭圆内一点的直线与椭圆E交于不同的A,B两点,交直线于点N,若,求证:为定值,并求出此定值【答案】(1);(2)【解析】【分析】(1)由长轴为8,得,由两个焦点与短轴的一个顶点构成等边三角形,可得,从而可得结果;(2)设,由可得,代入椭圆方程得到,同理可得,利用韦达定理可得结果.【详解】(1)因为长轴为8,所以,又因为两个焦点与短轴的一个顶点构成等边三角形,所以,由于椭圆焦点在轴上,所以椭圆的标准方程为:;(2)设,由得,所以,因为上,所以得到,得到;同理,由可得,所以m,n可看作是关于x的方程的两个根,所以,为定值.【点睛】本题主要考查待定系数法椭圆标准方程、圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种: 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.设函数,a为实数,求函数的单调区间;若存在实数a,使得对任意恒成立,求实数m的取值范围提示:【答案】(1)单调递减,单调递增;(2)【解析】【分析】(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)令,时,不合题意,时,利用导数求得,问题等价于恒成立,再利用导数求得的最大值即可得结果.【详解】(1),由,得,得,在上单调递减,在上单调递增.(2)令, 则,若e-a0,可得h(x)0,函数h(x)为增函数,当x+时,h(x)+, 不满足h(x)0对任意xR恒成立;若e-a0,由h(x)=0,得,则, 当x时,h(x)0,当x时,h(x)0, ,若f(x)g(x)对任意xR恒成立, 则0(ae)恒成立, 若存在实数a,使得0成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论