




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8讲 解三角形应用举例 基础题组练1两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A北偏东10B北偏西10C南偏东80 D南偏西80解析:选D.由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2一艘船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为()A15 km B30 kmC45 km D60 km解析:选B.如图所示,依题意有AB15460,DAC60,CBM15,所以MAB30,AMB45.在AMB中,由正弦定理,得,解得BM30,故选B.3如图,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A8 km/h B6 km/hC2 km/h D10 km/h解析:选B.设AB与河岸线所成的角为,客船在静水中的速度为v km/h,由题意知,sin ,从而cos ,所以由余弦定理得12221,解得v6.4某船开始看见灯塔在南偏东30方向,后来船沿南偏东60的方向航行15 km后,看见灯塔在正西方向,则这时船与灯塔的距离是()A5 km B10 kmC5 km D5 km解析:选C.作出示意图(如图),点A为该船开始的位置,点B为灯塔的位置,点C为该船后来的位置,所以在ABC中,有BAC603030,B120,AC15,由正弦定理,得,即BC5,即这时船与灯塔的距离是5 km.5海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,那么B岛和C岛间的距离是_ n mile.解析:如图,在ABC中,AB10,A60,B75,C45,由正弦定理,得,所以BC5(n mile)答案:56如图,为了测量河的宽度,在一岸边选定两点A,B望对岸的标记物C,测得CAB30,CBA75,AB120 m,则这条河的宽度为_解析:如图,在ABC中,过C作CDAB于D点,则CD为所求河的宽度在ABC中,因为CAB30,CBA75,所以ACB75,所以ACAB120 m.在RtACD中,CDACsinCAD120sin 3060(m),因此这条河的宽度为60 m.答案:60 m7如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75,从C点测得MCA60.已知山高BC100 m,求山高MN.解:根据图示,AC100 m.在MAC中,CMA180756045.由正弦定理得AM100 m.在AMN中,sin 60,所以MN100150(m)8某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45,距离为10 n mile的C处,并测得渔轮正沿方位角为105的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间解:如图所示,根据题意可知AC10,ACB120,设舰艇靠近渔轮所需的时间为t h,并在B处与渔轮相遇,则AB21t,BC9t,在ABC中,根据余弦定理得AB2AC2BC22ACBCcos 120,所以212t210281t22109t,即360t290t1000,解得t或t(舍去)所以舰艇靠近渔轮所需的时间为 h.此时AB14,BC6.在ABC中,根据正弦定理,得,所以sin CAB,即CAB21.8或CAB158.2(舍去),即舰艇航行的方位角为4521.866.8.所以舰艇以66.8的方位角航行,需 h才能靠近渔轮综合题组练1如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB5,BC8,CD3,DA5,且B与D互补,则AC的长为()A7 km B8 kmC9 km D6 km解析:选A.在ABC及ACD中,由余弦定理得8252285cos(D)AC23252235cos D,解得cos D,所以AC7.2如图,某住宅小区的平面图呈圆心角为120的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD. 已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟若此人步行的速度为每分钟50米,则该扇形的半径的长度为()A50 米 B50 米C50米 D50米解析:选B.设该扇形的半径为r米,连接CO.由题意,得CD150(米),OD100(米),CDO60,在CDO中,CD2OD22CDODcos 60OC2,即150210022150100r2,解得r50 .3.(应用型)如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为_解析:依题意可得AD20(m),AC30(m),又CD50(m),所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.答案:454(2019长春质量检测(二)在ABC中,内角A,B,C的对边分别为a,b,c,若其面积Sb2sin A,角A的平分线AD交BC于点D,AD,a,则b_解析:由面积公式Sbcsin Ab2sin A,可得c2b,即2.由a,并结合角平分线定理可得,BD,CD,在ABC中,由余弦定理得cos B,在ABD中,cos B,即,化简得b21,解得b1.答案:15(应用型)某港湾的平面示意图如图所示,O,A,B分别是海岸线l1,l2上的三个集镇,A位于O的正南方向6 km处,B位于O的北偏东60方向10 km处(1)求集镇A,B间的距离;(2)随着经济的发展,为缓解集镇O的交通压力,拟在海岸线l1,l2上分别修建码头M,N,开辟水上航线勘测时发现:以O为圆心,3 km为半径的扇形区域为浅水区,不适宜船只航行请确定码头M,N的位置,使得M,N之间的直线航线最短解:(1)在ABO中,OA6,OB10,AOB120,根据余弦定理得AB2OA2OB22OAOBcos 120621022610196,所以AB14.故集镇A,B间的距离为14 km.(2)依题意得,直线MN必与圆O相切设切点为C,连接OC(图略),则OCMN.设OMx,ONy,MNc,在OMN中,由MNOCOMONsin 120,得3cxysin 120,即xy2c,由余弦定理,得c2x2y22xycos 120x2y2xy3xy,所以c26c,解得c6,当且仅当xy6时,c取得最小值6.所以码头M,N与集镇O的距离均为6 km时,M,N之间的直线航线最短,最短距离为6 km.6在ABC中,已知B,AC4,D为BC边上一点(1)若AD2,SDAC2,求DC的长;(2)若ABAD,试求ADC的周长的最大值解:(1)因为SDAC2,所以ADACsin DAC2,所以sinDAC.因为DACBAC,所以DAC.在ADC中,由余弦定理,得DC2AD2AC22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生视角下图书馆藏书更新对阅读推广活动的优化策略论文
- 初中历史教学中学生历史思维能力培养研究论文
- 节能制度与管理制度
- 英维克档案管理制度
- 茶饮店员工管理制度
- 观众对绿色剧院演艺的感知
- 评估工作总结
- 《树和喜鹊》课件
- 财务与会计之非流动负债知识答题(一)
- 湖南省株洲市醴陵市2024-2025学年七年级下学期期末能力测试练习数学试卷(含答案)
- 河南大学语文试题及答案
- 协议附加合同范本
- 基于AI的智能汽车用户体验优化策略
- 毛石混凝土换填施工方案
- 公司信息安全管理制度
- 医院消毒隔离工作制度
- GB/T 10810.2-2025眼镜镜片第2部分:渐变焦
- 《长QT综合征》课件
- DBJ04T 439-2023 房屋建筑和市政基础设施工程造价指标指数编制标准
- 眩晕综合症的护理查房
- 海洋法知到智慧树章节测试课后答案2024年秋中国海洋大学
评论
0/150
提交评论