




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
异面直线所成的角的求法法一:平移法例1:在正方体中,求下列各对异面直线所成的角。(1)与BC;(2)与;(3)与AC。法二:中位线例2:在空间四边形ABCD中,ABCD,且ABCD,点M、N分别为BC、AD的中点,求直线AB与MN所成的角。变式:在空间四边形ABCD中,点M、N分别为BC、AD的中点,ABCD2,且MN,求直线AB与CD所成的角。习题1在空间四边形ABCD中,ADBC2,E,F分别为AB、CD的中点,EF,求AD、BC所成角的大小2正ABC的边长为a,S为ABC所在平面外的一点,SASBSCa,E,F分别是SC和AB的中点求异面直线SA和EF所成角3S是正三角形ABC所在平面外的一点,如图SASBSC,且ASBBSCCSA,M、N分别是AB和SC的中点求异面直线SM与BN所成的角的余弦值BMANCS4如图,在直三棱柱ABCA1B1C1中,BCA90,M、N分别是A1B1和A1C1的中点,若BCCACC1,求BM与AN所成的角5如图128的正方体中,E是AD的中点 (1)图中哪些棱所在的直线与直线BA成异面直线? (2)求直线BA和CC所成的角的大小; (3)求直线AE和CC所成的角的正切值;B(图128)AABCDCDFE (4)求直线AE和BA所成的角的余弦值法三:补形法例3:如图,PA平面ABC,ACB=90且PA=AC=BC,求下列各对异面直线所成的角的正切值.(1)PB与AC;(2)AB与PC。法四:空间向量法例4:在正方体中,E、F分别是的中点,求证:变式1. 如图,在正方体ABCD-A1B1C1D1中,E、F分别是相邻两侧面BCC1B1及CDD1C1的中心。求A1E和B1F所成的角的余弦值。BACDFEB1A1D1C12.已知空间四边形ABCD中,AB=BC=CD=DA=AC=BD=a,M、N分别为BC和AD的中点,设AM和CN所成的角为,求cos的值。3. 已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,且BE:EC=AF:FD=1:2,EF=,求AB和CD所成的角的大小。ABCDEFG法五:证明垂直法例5:在正方体中,E、F分别是的中点,求所成的角。变式:在长方体中,E是的中点,求所成的角。利用模型求异面直线所成的角模型:引理:已知平面的一条斜线a与平面所成的角为1,平面内的一条直线b与斜线a所成的角为,与它的射影a所成的角为2。求证:cos= cos1cos2。1.如图,MA平面ABCD,四边形ABCD是正方形,且MA=AB=a,试求异面直线MB与AC所成的角。ABCDM2 已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( )(A) (B) (C) (D) 3. 如图,在立体图形P-ABCD中,底面ABCD是一个直角梯形,BAD=90,AD/BC,AB=BC=a,AD=2a,且PA底面ABCD,PD与底面成30角,AEPD于D。求异面直线AE与CD所成的角的余弦值。PEDFABC练习题:1在正四面体ABCD中,点M、N分别为BC、AD的中点,则直线AB与MN所成的角为。2长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角为3.直三棱柱中,若,则异面直线与所成的角等于_.4. 已知正四棱柱中,为中点,则异面直线与所成的角的余弦值为_.5.已知正四棱锥的侧棱长与底面边长都相等,是 的中点,则所成的角的余弦值为_.6如图1,是正方形所在平面外一点,平面,则与所成的角的度数为_.7。设空间四边形ABCD,E、F、G、H分别是AC、BC、DB、DA的中点,若AB12,CD4 ,且四边形EFGH的面积为12 ,则AB和CD所成的角为. 8.如图平面ABCD,ABCD为正方形,且PA=AB,M、N分别为PB、CD的中点,求 (1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深入学习音阶和和声的关系2025年乐理考试试题及答案
- 教育教学反思中团队协作的重要性试题及答案
- 物理实验观察与记录题及答案2025年
- 2025森林消防考试试题及答案
- 精通2025年商务英语考试试题及答案
- 2025南航招聘英语试题及答案
- 少年数学试题及答案
- 2025飞行员面试英语题及答案
- 能源互联网分布式能源交易市场中的电力交易市场结构分析报告
- 即时配送行业配送路径优化与成本控制:物流大数据分析报告
- 浙江省金华市永康市2024年统编版小升初考试语文试卷(原卷版)
- 管道天然气居间合同范本
- 近视遗传研究的民族差异
- 变更劳动合同地址协议书
- 2024年四川省绵阳市八年级下册物理期末经典试题含解析
- 导地线压接培训课件
- 酒店工伤预防知识培训课件
- 计算机网络故障的诊断与解决方法
- 数字信号处理名校考研真题详解
- 职业生涯规划家庭教育课
- 月季整枝的修剪对策
评论
0/150
提交评论