摄影教学:计算摄影学_Computational Photography.ppt_第1页
摄影教学:计算摄影学_Computational Photography.ppt_第2页
摄影教学:计算摄影学_Computational Photography.ppt_第3页
摄影教学:计算摄影学_Computational Photography.ppt_第4页
摄影教学:计算摄影学_Computational Photography.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

a.3: understanding film-like photography tumblin,jack tumblin northwestern university,a3: understanding film-like photography or from 2d pixels to 4d rays (10 minutes),nave, ideal film-like photography,angle(,),position (x,y),2d sensor: pixel grid,film,well-lit 3d scene:,center of projection,sensor: a film emulsion, : or a grid of light meters (pixels),ray,rays and the thin lens law,focal length f: where parallel rays converge focus at infinity: adjust for s2=f closer focus ? larger s2,try it live! physlets,/applets/optics/intro.html,thin lens,f,s2,sensor,rays and the thin lens law,focal length f: where parallel rays converge focus at infinity: adjust for s2=f closer focus ? larger s2,try it live! physlets,/applets/optics/intro.html,scene,thin lens,f,s2,f,s2,sensor,not one ray, but a bundle of rays,but ray model isnt perfect: ignores diffraction lens, aperture set the point-spread-function (psf) (how? see: goodman,j.w. an introduction to fourier optics 1968),scene,sensor,aperture,lens,basic ray optics: lens aperture,for the same focal length: larger lens gathers a wider ray bundle: more light: brighter image narrower depth-of-focus smaller lens dimmer image focus becomes less critical more depth of focus,film-like optics: thin lens flaws,aberrations: real lenses dont converge rays perfectly spherical: edge rays center rays coma: diagonal rays focus deeper at edge,lens flaws: chromatic aberration,dispersion: wavelength-dependent refractive index (enables prism to spread white light beam into rainbow) modifies ray-bending and lens focal length: f() color fringes near edges of image corrections: add doublet lens of flint glass, etc.,http:/www.swgc.mun.ca/physics/physlets/opticalbench.html,chromatic aberration,lens design fix: multi-element lenses complex, expensive, many tradeoffs! computed fix: geometric warp for r,g,b.,near lens center,near lens outer edge,radial distortion (e.g. barrel and pin-cushion),straight lines curve around the image center,vignette effects,bright at center, dark at edges. several causes compounded: edge pixels span smaller angle and center pixels ray path length is longer off-axis internal shadowing compensation: use anti-vignetting filters, (darkest at center) or position-dependent pixel-detector sensitivity.,film-like color sensing,http:/www.yorku.ca/eye/photopik.htm,equiluminant curve defines luminance vs. wavelength,visible light: narrow band of emag. spectrum 400-700 nm (nm = 10-9 meter wavelength) (humans:1 octave honey bees: 3-4 octaves do honey bees sense harmonics, see color chords ?,film-like color sensing,rgb spectral curves vaytek ccd camera with bayer grid,visible light: narrow band of emag spectrum 400-700 nm (nm = 10-9 meter wavelength) at least 3 spectral bands required (e.g. r,g,b),color sensing,3-chip: vs. 1-chip: quality vs. cost,1-chip color sensing: bayer grid,estimate rgb at g cels from neighboring values, words/bayer-filter.wikipedia,polarization,sunlit haze is often strongly polarized. polarization filter yields much richer sky colors,rays and processing,one ray carries doubly infinitesimal power: ray bundles with finite, measurable power will: span a non-zero area fill a non-zero solid angle everything is linear: (huge win!) ray reflectance, transmission, absorption, scatter* rays are reversible. helmholtz reciprocity ray bundles? not so much: falls quickly with angle,area growth,film-like photography: many limitations,optics: single focus distance, limited depth-of-field, limited field-of-view, internal reflections/flare/glare lighting: camera has no knowledge of ray source strength, position, direction; little control (e.g. flash) sensor: exposure setting, motion blur, noise, response time, processing: quantization/color depth, camera shake, scene movement,conclusions,film-like photography methods limit digital photography to film-like results or less. broaden, unlock our views of photography: 4-d, 8-d, even 10-d ray space holds the photographic signal. look for new solutions by creating, gathering, processing rays, not focal-plane intensities. choose the best, most expressive sets of rays, then find the best way to measure them.,useful links:,interactive thin lens demo (or search physlet optical bench)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论