




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 欧几里得空间,前面介绍的线性空间,是n维向量空间R的抽象与深化 到目前为止我们在线性空间中只涉及到向量的加法与数乘 然而在三维空间中还有许多重要的几何概念和运算,例如 向量的长度,向量之间的夹角等概念以及向量的内积在线 性空间中都没有涉及及讨论,第一节 欧几里得空间,一、几何空间中向量的内积,1. 空间向量及两向量的夹角 (回顾),实际问题中, 既有大小又有方向的物理量称为向量.,几何上用有向线段表示一个向量, 线段的长度表示向量的大小., 空间向量为自由向量. 在直角坐标系下, 将向量的起点移至原点, 称之为向径.,向量 = (x, y, z) 的长度,向量的方向角,将空间两向量 , 的起点移至一点o, 两有向线段的夹角 (0 ),称为向量 与 的夹角,当 = 0 或 时,称 与 平行(共线),记作 / .,例如, 常力 f 作用于物体, 使之产生位移 s,2. 空间向量的内积.,这个力所作的功为,设, R3, 记 与 的夹角为, 称数,为向量 与 的,内积( 数量积 ), 记为 , 即,(1),( 勾股定理 ) 设 1, 2 , , k 是 n 维欧氏空间 Rn 中的向量, 且 i j 时, (i , j ) = 0 , 则,证, 与 的夹角, , 的长度,因为 = x12+y12+z12 ,(, 0 ) ., 所以,4. 用内积表示向量的长度及向量的夹角,二、n 维向量的内积,1. Rn 中向量内积定义,设, Rn, = (x1, x2, , xn), = (y1, y2, , yn), 称数 x1 y1 + x2 y2 + + xn yn 为 与 的内积. 记为(, ) , 即,(, ) = x1 y1 + x2 y2 + + xn yn (3),2、内积的性质,设, ,则Rn , kR, 则上面定义的内积满足以下性质:,当且仅当 = 0 时, 等号成立 .,性质 (1) 到 (4) 的证明可由内积定义直接推得.,(1),(2),(3),(4),三、欧氏空间Rn,称定义了内积的 n 维实向量空间 Rn 为 n 维欧几里得 (Euclid) 空间, 简称欧氏空间, 仍记作Rn.,三维欧氏空间 R3 具有直观性,习惯上称之为几何空间. R3 中向量长度及两向量的夹角等概念通过内积可平行推广到 Rn, 使 n 维欧氏空间具有可度量性.,设 = (x1, x2, , xn)Rn, 的长度,| | 定义为, 即,(4),特别地,时, 称 为单位向量.,当,故称,为 的单位化向量.,=1 ,四、标准正交基的概念及意义,1. 正交向量组:,如果欧氏空间中的向量组 1, 2 , , m 中任意两个向量都是相互正交的, 即,(i, j ) = 0, i j, i, j = 1, 2, , m,则称 1, 2 , , m 为正交向量组(简称正交组.),欧氏空间中不含零向量的正交向量组是线性无关的.,证,设1, 2 , , m是一个正交的向量组, 又设,k11 + k22 + kmm = 0,则,由于,故 ki = 0,故1, 2 , , m 线性无关.,2. 标准正交基,设1, 2 , , nRn, 如果,则称1, 2 , , n 是 Rn 的一组标准正交基.,显然,是 Rn 的标准正交基.,在 R3 中,分别为三个坐标轴正向的单位矢量.,五、 施密特(Schmit)正交化方法求标准正交基,下面讨论由 Rn 的一组基构造 Rn 的标准正交基的方法, 为直观起见, 先从 R3 开始讨论., 在 上的投影为:, 在 上的投影向量为:,为了便于讨论,首先介绍一个向量在另一向量上的投影及投影向量.,设1, 2 , 3 是 R3 的一组基, 令1 = 1, 将2 在 1 上的投影向量记为 2, 则2= k12 1, 其中,再取,则 2 1.,将 在 1, 2 上的投影向量分别记为,3 在 1, 2 所在平面上的投影向量为 3 .,则,其中,取,则,因此,是两两正交的非零向量组.,再将,单位化,即取,则,就是R3 的一组标准正交基.,一般地, 设,是 Rn 中的一个线性无关组, 取,容易验证,两两正交, 上述由,得到,的过程称之为向量组的正交化,将这 个正交化的向量组再单位化, 即取,就得到正交的单位向量组,称之为标准正交组.,上述从线性无关组求得标准正交组的方法称为施密特 (Schmit) 正交化方法.,解,设 R3 的一组基为 1 =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 草原火灾应急预案(3篇)
- 行政管理公文处理的心理学应用及试题答案
- 2024年水利水电工程考生指南试题及答案
- 行政管理科技影响试题及答案指南
- 火灾事故应急预案的意义(3篇)
- 公共关系的文化传播策略试题及答案
- 食品城发生火灾应急预案(3篇)
- 手术室火灾应急预案目的(3篇)
- 2025年物联网技术在互联网行业的应用与市场前景分析报告
- 行政管理心理健康维护试题及答案
- DBJ41T 287-2024 河南省预拌混凝土质量管理标准
- 《智能媒体传播》课程教学大纲
- 2025年多人股东合作协议书
- 时间序列分类与聚类方法-深度研究
- 七年级数学下册 第3章 单元综合测试卷(北师陕西版 2025年春)
- 2024年公司网络安全管理制度
- NCCN化疗止吐指南教程
- 《小王子》讲解+知识点+教案+课件
- 2025年甘肃兰州市事业单位招考(868人)高频重点提升(共500题)附带答案详解
- 生成式人工智能的教育应用与展望-以ChatGPT 系统为例
- 妊娠期糖尿病病人的护理查房
评论
0/150
提交评论