




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要 “打车难”的问题受到了多方关注,移动互联网的发展为改善这一问题提高了可能。 对于第一问,我们采用对于浮动车 GPS 数据的处理方法,对搜索得到的部分深圳市出租车数据 进行处理,选取其中 7 天的时间和深圳市 7 个不同类型的区域,计算汇总出在这些时间、空间当中 出租车的载客状态、行驶时间、行驶距离等信息。通过对比不同时间、空间的状态信息,初步分析 出租车供求关系的变化趋势。之后,根据相关论文所提供的数据和经验,建立供需关系评价模型, 计算 3 组出租车的相对数据作为出租车供需关系评价指标,并按照模型对其分级,将这三组分级相 结合可以得到对供需关系的最终评价。 对于第二问,通过比较打车软件补助出租车司机和乘客分别带来的供需关系的变化来探究补助 方案是否能够缓解“打车难”的问题。首先,通过分析反映司机在一段时间内工作状态的数据,对 使用打车软件前后司机搜索乘客的路线通过概率进行预测,分别得出其空驶路程和实际载客路程的 关系,最终计算出司机使用打车软件接待乘客数量增加 12.86%。从乘客的角度出发,通过最小二乘 法得到出租车的需求弹性价格为-0.49。将出租车司机使用软件带来的效率提高量和对乘客补贴带来 的需求的提高进行比较,得出对乘客补贴小于等于 5 元时能够有效缓解打车难的问题,补贴大于 5 元时由于需求增大打车难问题将更加突出。 对于第三问,首先使用演化博弈论对补贴对象进行分析,发现只有当向乘客收取一定费用、同 时对司机发放一定补贴,才有可能使新的平台占领市场,同时获得盈利;进而使用排队论,得出某 区域内乘客平均等待时间与乘客需求产生率呈正相关,与空车数量呈负相关;以缓解打车难、乘客 司机平台三方利益平衡为目标建立多目标规划,对于不同时空,用乘客需求率、空车率作为描述供 求关系的指标。规划结果指出,当供小于求时,向乘客收取的费用将增高,进而致使:在供小于求 的区域中,利润增加增大对司机的吸引度,司机提高对该区域供应,以满足需求;在供小于求的时 间段,乘客因为出行成本增高,会考虑避开高峰期出行。对于打车平台而言,不同时空的乘客需求 率、空车率都是极易获取的信息,据此做出决策是具有可行性的。 问题重述 作为一项交通工具,出租车的重要性不言而喻。“打车难”的问题受到了多方关注。伴随着移 动网络的发展,打车软件应运而生。它不仅改善了司机乘客之间信息的不对称,同时通过多种方式 对用户进行补贴。 问题如下: (1)选取建立合理的指标,分析不同时空出租车资源的供求关系。 (2)各出租车补贴方案是否有利于“缓解打车难”? (3)什么样的补贴方案适用于新创建的一个打车软件服务平台,并论证其合理性。 问题分析 第一问要寻找合适的出租车数据,对数据按照不同的时间、空间进行分类处理,并利用现有数 据选取指标计算,分析这些指标同时间、空间的关系。之后建立评价模型,利用所得指标计算出租 车供需关系的评价分数。 第二问通过相关资料的查阅,各公司均采用对乘客和司机同时补助的方法。我们通过对一段时 间内出租车增加的可接乘的人数和增加的乘客人数的数量大小进行比较从而推断出打车软件的补贴 是使得打车更容易还是更难。 第三问中新的补贴方案对于补贴对象及补贴程度都需要考虑。 可以从不同时空的角度进行分析, 对于供求关系不同的时空,应用不同的补贴方案,以达到缓解“打车难”,同时兼顾平台、乘客、司 机三方利益。 问题假设 假设出租车都遵守规章制度,不拒载、不拼车、不绕道、打表计费。 假设出租车提供的服务基本相同。 假设出租车市场受到严格监管,无法随意增减出租车的数量以及改变出租车的价格体系 假设天气对供求的影响可以忽略 符号约定 意义 符号 出租车实载路程 V 出租车使用打车软件前空驶路程 V1 出租车使用打车软件后空驶路程 V2 出租车客运量 Q 出租车价格 W 模型建立 问题一 1.0 数据预处理 浮动车在采集数据时,会由于车载终端设备、总服务器,或者外界某些因素如乘客上车但司机 未打表等的影响, 产生数据异常的情况。 1在浏览初始数据和后续的计算当中, 我们发现了数据当中 有如下几个问题: 可能由于出租车暂时停运,或者人为关闭车载终端设备,导致一段时间内没有数据记录。 可能由于数据传输中外界的干扰,造成载客一栏出现其他数据,如 96,97,32 等的状况。 可能由于司机在接乘客时,口头要价而不打表,造成载客一栏始终为 0。 可能由于数据传输中的问题,导致速度一栏始终为 0. 对于以上几个问题,我们利用 MATLAB 对初始数据进行如下处理: 因为初始数据的时间范围为 2011/4/18 0:00:00 左右到 2011/4/26 12:00:00 左右, 共 8.5天, 我们将其中停运状态超过 3 天的车辆数据删除。 将载客栏出现异常数据,如 96,97,32 等的车辆数据删除。 删除速度栏一直为 0 的车辆数据。 另外,在之后的计算中,为缩短数据处理所用的时间,并排除 GPS 在记录速度当中有可能出现 的间隔性失灵的问题,我们选择用坐标以及运行时间来代替速度数据,而不预先处理那些坐标发生 变化,但是速度为 0 的车辆数据。 由于数据当中最早时间为 2011/4/18 0:00:00 左右,一共有 8.5 天,因此我们选择一周,即前 7 天的数据进行后续计算。 数据预处理之后,我们由之前的 13789 组数据得到了 9991 组可用数据,并保存在了.mat 文件 中,使数据大小变为原来的 1 10,并且缩短了读取数据所用时间。 1.1 出租车资源供需关系的时空分布特征 为了研究不同时空下出租车资源的供需关系,结合现有数据,我们决定计算如下几个数据进行 分析。 乘客出行需求 包括: 乘客出行次数, 用出租车由未载客转变为载客的状态变化次数近似代替2, 随空间和时间 而变化; 乘客出行初始时间分布,用出租车由未载客变为载客的时间点近似代替,随空间和时间 而变化。 乘客出行所用时间,用出租车每次载客时间的平均值近似代替,随空间和时间而变化; 乘客出行距离, 用出租车每次载客所驶过距离的平均值近似代替, 随空间和时间而变化。 出租车供应量 包括:空车数量和载客车辆数量,由载客状态决定,随空间和时间而变化; 空载时长和载客时长,由载客状态的变化时间而决定,随空间和时间而变化; 空载距离和载客距离,由载客状态变化时的经纬度而决定,随空间和时间而变化。 1.1.1 出租车资源供需关系的时间分布特征 需求分布 根据对 7 天数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不同时 间段上客数量的分布。 在图中可以看出, 每天乘客的出行高峰有三个时间段, 分别为 8:00-11:00,15:00-17:00, 21:00- 23:00。 其中,第三天的数据在 20:00 之后发生了较大的变化,原因可能为所使用的数据量较少,出现 天气原因, 不能反映每周的乘客上车人数情况; 第五天的数据在 18:00 之后发生了大幅下滑, 在 21:00 之后又大幅攀升,可能是人们在周末前一晚参加各种活动,打乱平时日常行程安排所致。 通过比较,周末的乘客数量攀升趋势明显小于工作日,前两个高峰出行人数降低,而晚高峰保 持较高的数量。这表明在周末,人们大多选择在晚上出行。3 根据对 7 天数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不同时 间段平均载客时长的分布,以此来近似表示乘客平均出行所需时长。 由图中可以看出,在一天中乘客平均出行时长有两个高峰,分别为 9:00-11:00,18:00-20:00。 其中,第五天的数据在 18:00-21:00 明显高于其他时间,可能是人们在周末前一晚参加各种活 动,打乱平时日常行程安排,并且路面交通拥堵所致。 通过比较,在两个高峰时间段,周末的乘客平均出行时长明显小于工作日。这表明在周末,人 们在每个时间段内出行距离比较平均,而工作日的高峰则是上班时间集中,路面交通拥堵导致的。 供应分布 根据对 7 天数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不同时 间段空车产生数量的分布。 空车的产生表示增加的可载客的出租车数量。从图中可以看出,空车的产生数量的趋势和上客 数量的趋势是相似的,这是因为空车的产生和不同时间上客数量以及乘客平均出行时间,即平均载 客时长有关。 根据对 7 天数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不同时 间段每辆出租车每小时内平均空载时长的分布。 由图可以看出,每小时空载时间在 0:00-5:00 总体呈上升趋势,表示出租车的供应量上升;在 6:00-9:00 总体呈下降趋势,表示供应量下降。这与人们的日常作息时间密切相关。 周末两天的空载时间和工作日相比,变化幅度较小,这可能是周末大多数人不用上班工作,出 行时间不定导致的。 1.1.2 出租车资源供需关系的空间分布特征 为了研究出租车供需关系的空间特征,我们选取了 7 个区域进行分析。 福田 CBD,位于福田区,是深圳的商业贸易中心,经纬度范围114.02,114.065;22.51,22.55 国 贸 , 位 于 罗 湖 区 , 是 深 圳 老 商 业 中 心 , 且 有 居 民 区 分 布 , 经 纬 度 范 围 114.096,114.13;22.54,22.554 皇岗村,位于罗湖区,居民区集中分布,经纬度范围114.063,114.074;22.523,22.534 福田口岸和皇岗口岸,位于福田区和罗湖区之间,是重要的对外商贸口岸,经纬度范围 114.06,114.09;22.514,22.533 东门,位于罗湖区,居民区集中分布,经纬度范围114.12,114.14;22.544,22.56 龙华街道,位于坂田区,商业区和居民区混杂,经纬度范围114,114.07;22.63,22.671 蛇口街道,位于南山区,商业区和居民区混杂,经纬度范围113.918,114.95;22.48,22.510 下文将用区域 1-7 分别代替这 7 个区域的名称 需求分布 根据对 7 个区域数据的处理,我们将数据按照时间段统计,每个分段为 1 小时,得到不同时间 段平均上客人数。 从图中可以看出,各个区域的平均上客人数随时间的变化趋势是相似的。但是区域 6 和区域 7 在白天上客人数明显较少,可能是因为区域比较偏远,同时居民区和商业区混杂,发展程度相对较 差造成的。 根据对 7 个区域数据的处理,我们将数据按照时间段统计,每个分段为 1 小时,得到不同时间 段平均每次载客所用时长。 在图中可以看出,在白天,7 个区域的时长变化趋势基本相同。在凌晨,区域 7 的波动较大,这 可能是因为所在区域载客数据较少造成的。区域 6 的平均载客时间要明显大于另外 6 个区域,这可 能是因为区域 6 的范围较大,包含某些载客时间较长的载客记录。 供应分布 根据对 7 个区域数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不 同时间段空车产生数量的分布。与时间特征相同,空车的产生数量的趋势和上客数量的趋势是相似 的,这是因为空车的产生和不同时间、不同地区上客数量以及乘客平均出行时间,即平均载客时长 有关。 根据对 7 个区域数据的处理,我们将每天的数据按照时间段统计,每个分段为 1 小时,得到不 同时间段平均空载时长的分布。 在图中可以看出,在凌晨,区域 5、6 的平均空驶时长明显高于其他区域,在白天,区域 6 的平 均空驶时长明显高于其他区域,这表示正在对应的时间这两个区域的出租车供应量充足。这可能是 5 区域为居民区,凌晨活动非常少;6 区域较偏远,发展水平不高造成的。 1.2 出租车供需水平研究 结合实际情况以及现有数据,我们选择计算三个指标进行供需水平研究,每个指标分为三个等 级,分别为供大于求、供求平衡、供小于求,将其各自等级相加,可以将总供需水平分为 7 个等级, 便可对某一区域某时间的出租车供需水平做出评价。 载客率 即载客车辆与空车的比值。 根据研究数据显示, 载客车辆与空车比值在低于 2:3 时为供大于求, 赋值为 1;在高于 1.3 时为供小于求,赋值为 3;在两个比值中间时为供需平衡状态,赋值为 2。 载客时长与空载时长的比值 载客时长与空载时长的比值在低于 0.4 时为供大于求,赋值为 1;在高于 0.8 时为供小于求, 赋 值为 3;在两个值中间时为供需平衡状态,赋值为 2。 载客行驶距离与空载行驶距离的比值 载客行驶距离与空载行驶距离的比值在低于 1 时为供大于求,赋值为 1;在高于 2 时为供小于 求,赋值为 3;在两个值中间时为供需平衡状态,赋值为 2。 将 3 个值相加可以得到最终分级,级别越高,则供给明显大于需求;级别越低,则供给明显小 于需求;级别为 6 时,说明供求达到更佳的平衡状态。 现根据以上模型, 计算国贸、 福田口岸、 龙华街道在前 7 天每小时的平均分级, 得到以下数据: 时间 国贸 福田口岸 龙华街道 0:00-1:00 4.8571 5.4286 3.1429 1:00-2:00 4.4286 5.2857 3.0000 2:00-3:00 4.2857 4.0000 3.0000 3:00-4:00 4.1429 4.1429 3.5714 4:00-5:00 4.0000 4.0000 3.8571 5:00-6:00 4.1429 4.4286 4.0000 6:00-7:00 4.0000 5.2857 4.2857 7:00-8:00 5.4286 5.7143 4.8571 8:00-9:00 7.4286 7.8571 5.1429 9:00-10:00 7.8571 7.8571 4.8571 10:00-11:00 8.0000 7.5714 5.0000 11:00-12:00 8.0000 7.0000 5.1429 12:00-13:00 7.0000 6.4286 4.7143 13:00-14:00 8.0000 6.7143 5.0000 14:00-15:00 8.7143 8.7143 5.0000 15:00-16:00 8.0000 8.8571 5.1429 16:00-17:00 7.8571 8.4286 4.7143 17:00-18:00 8.4286 8.8571 4.7143 18:00-19:00 8.1429 7.8571 4.8571 19:00-20:00 7.8571 7.5714 4.4286 20:00-21:00 8.2857 7.2857 4.5714 21:00-22:00 8.5714 7.8571 4.2857 22:00-23:00 8.1429 8.0000 4.0000 23:00-24:00 6.1429 5.8571 3.2857 将 3 个区域的每小时载客车辆数量、每小时载客空车数量比 每小时载客行驶距离、每小时载客空驶距离比 每小时载客行驶时长、每小时载客空驶时长比分别作图 对时间段 6:00-7:00,利用生活经验判断评价对空间变化的有效性。 在评分当中可以看出,此三个地区,均为供大于求的状况,其中福田口岸更趋向于供需平衡, 国贸更趋向于供大于求,龙华街道介于二者之间。 在图中可以看出,福田口岸的载客车辆数、载客空车数量比与其他两区域基本相同,且空车率 较高;载客时长位于其他两区域之间且相差不大,载客空驶时长比与其他两区域基本相同,且空驶 时间所占比例较高;但平均载客距离、载客空驶距离比都明显高于其他两区域。这表明,福田口岸 相对更趋于供需平衡的状态。 同理,可得出龙华街道比国贸稍趋近于平衡状态。 因此,该评价对空间的变化是有效的。 对国贸地区时间段 6:00-7:00 以及 7:00-8:00,利用生活经验判断评价对时间变化的有效性。 在评分当中可以看出, 此两个时间段, 均为供大于求的状况, 其中 7:00-8:00 趋向于供需平衡, 6:00-7:00 趋向于供大于求。 在图中可以看出,7:00-8:00 的载客车辆数、载客空车数量比都有明显的上升,且空车率接近于 1,比较合理;载客时长、载客空驶时长比有大幅度的上升,且空驶时间所占比例越来越趋近于 1; 平均载客距离、载客空驶距离比页有大幅度的上升。这表明,7:00-8:00 趋近于供需平衡状态。 同理,可得出 6:00-7:00 供明显大于求。 因此,该评价对时间的变化是有效的。 综上,并对所得数据进行多组检验,可以认为该评价标准可以有效地综合出租车运行数量、载 客时间、载客行驶距离等包含乘客需求和出租车供应能力的数据,对分析出租车供需水平的时间空 间特点都是有效的。 问题二 打车软件采取的是同时对司机和乘客进行补助的方式,在软件发展的不同时期对司机的补助在 0-10 元不等,对乘客补助在 0-20 元不等。 2.1 对出租车司机的补助 由查阅到的资料7知:由于出租车司机仍服从所属出租车公司管理,打车软件的补助引起司机 数量的变化并不大;同时由于打车软件多采用无差别补助,根据经济学相关理论,这些补助方式对 司机积极性调用有限。因此我们着重讨论打车软件对出租车剩余价值的影响4。 为了更方便地研究打车软件对司机搜索乘客效率的改变,将问题一中的数据进行合理的处理: a.取深圳市中心 6 个区域进行研究,其边界分别为: 区域 1:114.0555,114.0791,22.5608,22.5757; 区域 2:114.0555,114.0791,22.5347,22.5608; 区域 3:114.0555,114.0791,22.5161,22.5347; 区域 4:114.0791,114.1107,22.5550,22.5757; 区域 5:114.1107,114.1514,22.5487,22.5757; 区域 6:114.1107,114.1514,22.5392,22.5487。 随机选取 2000 辆出租车,由于选取区域面积相对较大且深圳出租车起步为 2km,剔除数据 中较多的载客行驶 1km 以内的数据。 b.用 8 天中所有从 j 区到达 i区的出租车的平均行驶距离代表 j 区到 i 区的行驶距离 ,统计结 果如表 1: 地区 1 2 3 4 5 6 1 1.8104 2.4132 2.9614 3.6159 7.8167 7.6884 2 2.3522 2.0073 1.9954 3.5135 7.4854 6.0192 3 2.6480 6.2205 1.7797 5.3651 8.3147 6.4561 4 3.4747 3.5136 5.1375 2.0057 3.3702 3.4472 5 7.9108 7.0207 8.1607 5.6326 2.4698 2.1029 6 8.0470 6.1207 6.5519 5.0398 2.2488 1.9884 表 1 各地区平均距离 (km) c.分析 2000 辆出租车的行驶情况,统计出从 j 区出发到达 i 区的所有出行分布如表 2: 地区 1 2 3 4 5 6 1 96 331 138 357 136 38 2 398 1777 1545 1033 396 480 3 120 1325 3015 373 541 1135 4 394 884 373 1596 1785 618 5 121 398 673 1632 4509 3205 6 67 476 1679 881 3692 2020 表 2 出租车乘客需求 Oi表示 i地区乘客需求量;Dj表示 j 地区出租车到达量。 由V= 可计算得出租车实载路程为 V= 134232km。 打车软件出现之前,出租车司机搜索乘客既要考虑行驶的路程,还需根据自身的行车经验考 虑潜在乘客的分布,从 j 地区出发的空驶出租车选择前往 i地区的概率为 1= () ( ) (1) 式中为驾驶员个人特征修正值,越大表示对道路情况掌握越精确;为将交通区域出行需求 对效用值影响转化为出行时间对效用值影响的转换系数。为j地到i地平均距离,由于所取区域面 积较大,取 = 0.1 , = 0.015。 代入数据计算可得1分布如表3: 地区 1 2 3 4 5 6 1 0.000 0.010 0.023 0.009 0.810 0.147 2 0.000 0.010 0.024 0.009 0.793 0.164 3 0.000 0.007 0.027 0.008 0.788 0.169 4 0.000 0.006 0.012 0.007 0.828 0.147 5 0.000 0.004 0.008 0.005 0.830 0.154 6 0.000 0.004 0.010 0.005 0.829 0.152 表 3 无软件模式下出租车搜索方向概率 可求得传统巡游模式下搜索行为产生的出租车空驶里程 1= 1 = 167897km (2) 当出租车司机使用打车软件时,可与乘客提前充分沟通,通常选择最短路径到达需求量不为零 的小区,需求量大小不再对搜索行为产生影响。驾驶员的个人特征值差异也因为打车软件提供的电 子地图可以忽略不计。参照式(1),可推算出使用打车软件的空驶出租车在j 小区的选择驶往存 在需求i地区的概率为 2= () () (3) 代入数据计算可得2分布如表4: 地区 1 2 3 4 5 6 1 0.492 0.269 0.156 0.081 0.001 0.001 2 0.239 0.337 0.341 0.075 0.001 0.006 3 0.128 0.010 0.830 0.023 0.001 0.008 4 0.116 0.111 0.022 0.503 0.129 0.119 5 0.002 0.004 0.001 0.017 0.399 0.576 6 0.001 0.009 0.006 0.026 0.417 0.541 表 4 打车软件模式下出租车搜索方向概率 可求得使用打车软件模式下搜索行为产生的出租车空驶里程 2 = 2 = 1 = 89592km (4) 使用打车软件后在这段时间内共可多接送乘客 = (21)2 (+2) ,其中 为出租车每次接送 乘客的平均路程, = 3.5105km。 由此计算出使用打车软件后接待乘客数上升 12.86% 2.2 对乘客的补助 由于打车软件大多处于推广阶段,对乘客的补助目的在于培养软件的用户群。 出租车需求价格弹性分析模型6 = 0.49 + 0.55+ 6.38 (5) 其中,Q 为出租车客运量,W 为出租车价格。 由此模型可得,出租车的需求弹性价格为-0.49。我们可以近似的认为出租车补贴价格每达到 出租车票价的 10%,乘客人次上升 4.9%。 2.3 综合考虑出租车补贴方案是否对“缓解打车难”有帮助 出租车每次接送乘客的平均路程 = 3.5105km,根据深圳市出租车收费标准,出租车平均车 费为20元/次。 当打车软件对乘客补助为4元时,乘客数量约上升10.04%,而得益于打车软件对司机接客的统 筹安排,出租车运载能力提高12.86%10.04%,因此可有效缓解“打车难”问题。 当打车软件对乘客补助为5元时,乘客数量约上升12.68% 12.86%,因此能缓解“打车难”问 题。 当打车软件对乘客补助为6元时,乘客数量约上升15.43% b*时,a=0 和 a=1 是两个稳定状态,而其中 a=0 为演化稳定策略。当 b a*时,b=0 和 b=1 是两个稳定状态, 而其中 b=0 为演化稳定策略。当 a=1独立,服从相同参 数为 的负指数分布 F(t)。 乘客所需的服务时间序列,n=1独立,服从参数为 的负指数分布 G(t)。 参数 即为系统单位时间的平均到达率,参数 即为服务台单位时间的平均服务率。 时刻 t 系统的乘客数为 N(t),经过t 乘客数从 i变为 j 的概率是: () = +(), = + 1, 0 + (), = 1, = 1,2, 1 +(), = 1, = , +1, (), | | 2 令 = ,由生灭定理至 7 | data(i,4) floor(vacp(i,1)/100) time2(t2c,1)=vacp(i,1); time2(t2c,3:4)=vacp(i,3:4); vacp(i,3:4)=vacp(i,3:4) + count_time(floor(vacp(i,1)/100)+1)*100,vacp(i,1) / count_time(vacp(i,1),vacp(1,2) * (vacp(i,5:6)-vacp(i,3:4); vacp(i,1)=(floor(vacp(i,1)/100)+1)*100; time2(t2c,2)=vacp(i,1)-40; time2(t2c,5:6)=vacp(i,3:4); end if vacp(i,1)=vacp(i,2) t2c=t2c+1; time2(t2c,1)=vacp(i,1); time2(t2c,2)=vacp(i,2); time2(t2c,3:4)=vacp(i,3:4); time2(t2c,5:6)=vacp(i,5:6); end end for j=1:t2c f=find(floor(time2(j,1)/100)=t1); if time2(j,2)- 100*floor(time2(j,2)/100)60 %若终止时间 分 钟 60,做处理 time2(j,2)=60+100*floor(time2(j,2)/100); end if floor(time2(j,2)/100) floor(time2(j,1)/100) end loc=find_location(time2(j,3),time2(j,4); if loc=0 VTime(f,loc,2)=VTime(f,loc,2)+time2(j,2)-time2(j,1); vacum(f,loc)=vacum(f,loc)+1; end end for j=1:t1c f=find(floor(time1(j,1)/100)=t1); if time1(j,2)-100*floor(time1(j,2)/100)60 time1(j,2)=60+100*floor(time1(j,2)/100); end if floor(time1(j,2)/100) floor(time1(j,1)/100) end loc=find_location(time1(j,3),time1(j,4); if loc=0 VTime(f,loc,1)=VTime(f,loc,1)+time1(j,2)-time1(j,1); full(f,loc)=full(f,loc)+1; end end end for i=1:216 for j=1:7 if full(i,j)=0 VTime(i,j,1)=VTime(i,j,1)/full(i,j); end if vacum(i,j)=0 VTime(i,j,2)=VTime(i,j,2)/vacum(i,j); end end end for i=1:216 VTime(i,:,3)=VTime(i,:,1)/VTime(i,:,2); end 4、%计算分时间、分区的载客、空载距离 t1=zeros(216,1); for j=1:9 for i=1:24 t1(j-1)*24+i)=(j-1)*100+(i-1); end end VDist=zeros(216,7,2); file=dir(*.mat); vacum=zeros(216,7);full=zeros(216,7); for j=1:100 j a=importdata(file(j).name); a(:,7)=0; %第 7 列元素初始化,0=未载客,1=载客 s=length(a(:,1); fulc=0;vacc=0; t1c=0;t2c=0; time1=; time2=; %载客时间段 载客 GPS 段 未载客时间段 未载客 GPS 段 整理过 fulp=; vacp=; %载客时间段 载客 GPS 段 未载客时间段 未载客 GPS 段 for i=2:s if i=s if (a(i,1)-a(i-1,1) floor(vacp(i,1)/100) time2(t2c,1)=vacp(i,1); time2(t2c,3:4)=vacp(i,3:4); vacp(i,3:4)=vacp(i,3:4) + count_time(floor(vacp(i,1)/100)+1)*100,vacp(i,1) / count_time(vacp(i,1),vacp(1,2) * (vacp(i,5:6)-vacp(i,3:4); vacp(i,1)=(floor(vacp(i,1)/100)+1)*100; time2(t2c,2)=vacp(i,1)-40; time2(t2c,5:6)=vacp(i,3:4); end if vacp(i,1)=vacp(i,2) t2c=t2c+1; time2(t2c,1)=vacp(i,1); time2(t2c,2)=vacp(i,2); time2(t2c,3:4)=vacp(i,3:4); time2(t2c,5:6)=vacp(i,5:6); end end for j=1:t2c f=find(floor(time2(j,1)/100)=t1); if time2(j,2)-100*floor(time2(j,2)/100)60 %若终止 时间 分钟 60,做处理 time2(j,2)=60+100*floor(time2(j,2)/100); end if floor(time2(j,2)/100) floor(time2(j,1)/100) end loc=find_location(time2(j,3),time2(j,4); if loc=0 VDist(f,loc,2)=VDist(f,loc,2)+distance(time2(j,3),time2(j,4),time2(j,5),tim e2(j,6)*pi*6371*2/360; vacum(f,loc)=vacum(f,loc)+1; end end for j=1:t1c f=find(floor(time1(j,1)/100)=t1); if time1(j,2)-100*floor(time1(j,2)/100)60 time1(j,2)=60+100*floor(time1(j,2)/100); end if floor(time1(j,2)/100) floor(time1(j,1)/100) end loc=find_location(time1(j,3),time1(j,4); if loc=0 VDist(f,loc,1)=VDist(f,loc,1)+distance(time1(j,3),time1(j,4),time1(j,5),tim e1(j,6)*pi*6371*2/360; full(f,loc)=full(f,loc)+1; end end end for i=1:216 for j=1:7 if full(i,j)=0 VDist(i,j,1)=VDist(i,j,1)/full(i,j); end if vacum(i,j)=0 VDist(i,j,2)=VDist(i,j,2)/vacum(i,j); end end end for i=1:216 for j=1:7 VDist(i,j,3)=VDist(i,j,1)/VDist(i,j,2); end end 5、%画载客、空驶时长对比图 load(Ful_Vac_Time_parted.mat) time_full=zeros(24,8); t=1:24; str1=0:00;str3=2:00;str5=4:00;str7=6:00; str9=8:00;str11=10:00;str13=12:00;str15=14:00; str17=16:00;str19=18:00;str21=20:00;str23=22:00;str25=24:00; for j=1:7 for i=1:8 time_full(:,j)=time_full(:,j)+VTime(i*24-23):(i*24),j,1); end time_full(:,j)=time_full(:,j)/8; end T=0:0.01:24; for i=1:8 fult(:,i)=spline(t,time
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45505.1-2025平板显示器基板玻璃测试方法第1部分:外观与几何尺寸
- 物业服务企业绩效考核实施方案
- 2025年游戏开发行业招聘面试模拟题集及答案解析
- 2025年金融投资从业者必-备资质考试预测试题及答案
- 危废泄漏专项应急处理方案(范文示范)
- 2025年融媒体编辑笔试题目解析
- 2025年道路运输企业安全生产管理人员作业考试题库(附答案)
- 2025年注册验船师资格考试(A级船舶检验专业基础环境与人员保护)测试题及答案一
- 2026届海南省儋州市一中高一化学第一学期期中教学质量检测模拟试题含解析
- 2025年可持续发展与环境管理考试试题及答案
- 2024年保育师考试测试题库及答案
- 招聘笔试题及解答(某大型央企)2025年
- 四川省成都市 2022~2023学年高一下期期末适应性考试化学试题(解析版)
- 河北安装工程消耗量定额计算规则
- 义务教育《数学课程标准》2022年版原文
- 精装房验收实测报告范本
- 安全生产风险分级管控与隐患排查治理双重体系工作
- EPC工程总承包招标
- 劳务施工组织方案 劳务施工组织设计(八篇)
- 抗菌药物合理使用培训测试题(答案)
- 青藏铁路公司普速铁路维修管理办法
评论
0/150
提交评论