一元函数积分(定积分的几何应用).ppt_第1页
一元函数积分(定积分的几何应用).ppt_第2页
一元函数积分(定积分的几何应用).ppt_第3页
一元函数积分(定积分的几何应用).ppt_第4页
一元函数积分(定积分的几何应用).ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中南大学开放式精品示范课堂高等数学建设组,3.3 定积分的应用,高等数学A,第3章 一元函数积分学,3.3.1 平面图形的面积 3.3.2 体积(1),3.3 定积分的应用,3.3.1 平面图形的面积,问题的提出与微元法,直角坐标情形,参数方程情形,计算平面图形面积习例1-4,极坐标情形,计算平面图形面积习例5-7,3.3.2 立体体积,旋转体的体积,计算立体体积习例8-11,内容小结,定积分的几何应用,回顾,曲边梯形求面积的问题,一、问题的提出与微元法,将曲边梯形面积表示为定积分的步骤如下:,提示,(1)求总体量, 先求部分量(以不变代变).,(2)对部分量求和取极限.,若所求量U须满足条件:,(1) U是与一个变量x的变化区间a,b有关的量.,(2) U对于区间a,b具有可加性, 就是说, 如果把区间 a,b分成许多部分区间, 则U相应地分成许多部 分量, 而U等于所有部分量之和.,则可用定积分来表达这个量U.,微元法的一般步骤:,根据问题的具体情况, 选取一个变量(如x)为积分变 量, 并确定它的变化区间a,b.,(2)设想把区间a,b分成n个小区间, 取其中任一小区间 并记为x, x+dx, 求出相应于这小区间的部分量U 的近似值.,如果U能近似地表示为a,b上的一个连续函数在x 处的值f(x)与dx的乘积, 就把f(x)dx称为量U的微元, 且记为dU.,这个方法通常叫做微元法,应用方向:平面图形的面积、 体积、平面曲线的弧长、 功、水压力、引力和平均值等。,曲边梯形的面积,围成图形的面积,1. 直角坐标情形,二、平面图形的面积,说明:注意各积分区间上被积函数的形式,则曲边梯形面积,此时要注意曲边是有正方向的! 从而确定出起点和终点.,当你沿曲边朝着这方向前进时曲边梯形将在你的右边.,2. 参数方程情形,计算平面图形面积习例,例4,例1,例2,例3,解,两曲线的交点,选x为积分变量,例1,两曲线的交点,选 为积分变量,例2,解,椭圆的参数方程,由对称性知总面积等于4倍第一象限部分面积,例3,解,例4,解,所求面积,面积元素,曲边扇形的面积,3. 极坐标情形,计算平面图形面积习例,例5,例6,例7,由对称性知总面积=4倍第一象限部分面积,例5,解,利用对称性知,例6,解,例7,解,旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体这直线叫做旋转轴,圆柱,圆锥,圆台,旋转体的体积,三、立体体积,旋转体的体积为,例8,例10,例11,计算立体体积习例,例9,解,例8,解,(1)绕 x 轴旋转时,选 x 为积分变量,(2)绕 y 轴旋转时,例9,解,例10,(2)解法2(柱壳法),柱壳体积,柱面面积,补充,体积元素为,例11,解,内容小结,1. 平面图形的面积,边界方程,参数方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论