答案(可通过左边的bookmark迅速查找答案).pdf_第1页
答案(可通过左边的bookmark迅速查找答案).pdf_第2页
答案(可通过左边的bookmark迅速查找答案).pdf_第3页
答案(可通过左边的bookmark迅速查找答案).pdf_第4页
答案(可通过左边的bookmark迅速查找答案).pdf_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

答案 (可通过左边的 bookmark 迅速查找答案) 第一次练习 1在主窗口输入: a=exp(1) A=pi exp(pi)-piexp(1) %比较 e 和e的大小 2A=rand(3,3) %产生随机数矩阵 B=inv(A) %求 A 的逆矩阵 C=B*A D=B.*A E=sqrt(C) format short %设置数据的形式 E 第二次练习 1%质点运动图形 clear; t=0:0.05:1000; w1=2; w2=1,2,4,3,5,7,sqrt(3),sqrt(5),exp(1);%w2 可以选不同的值 x=sin(w1*t); for n=1:9; y=sin(w2(n)*t); subplot(3,3,n); plot(x,y); end 2. %本征函数静态 %画出四种本征函数系 sin(nx/l), cos(nx/l), sin(n+1/2)x/l), cos(n+1/2)x/l)的图形,其中 n 取 1,2,3,4。 clear;clf; n=1:3; x=0:0.01:1; X N=meshgrid(x,n) Y1=sin(pi*N.*X); Y2=cos(pi*N.*X); Y3=sin(pi*(N+1/2).*X); Y4=cos(pi*(N+1/2).*X); Y=cat(3,Y1,Y2,Y3,Y4); for k=1:4 subplot(2,2,k) plot(x,Y(:,:,k),b) axis(0,1,-1,1) end 第三次练习 1. %本征函数动态 clear;clf;clc; n=1:3;% x=0:0.04:1; t=0:0.02*pi:0.8*pi; X N T=meshgrid(x,n,t); for k=1:50 subplot(2,1,1) Y1=sin(pi*N(:,:,1).*X(:,:,1).*cos(pi*N(:,:,1).*T(:,:,k); plot(x,Y1); axis(0,1,-1,1) m1(:,k)=getframe; subplot(2,1,2) Y2=-cos(pi*N(:,:,1).*X(:,:,1).*sin(pi*N(:,:,1).*T(:,:,k); plot(x,Y2); axis(0,1,-1,1) m2(:,k)=getframe; end movie(m1,1); movie(m2,1); 2. %画复变函数图形 %(z-0.5)1/2 z=cplxgrid(50); cplxmap(z,sqrt(z-0.5) %画ez的图形 z=cplxgrid(50); cplxmap(z,exp(z) %画 lnz 的图像 z=cplxgrid(50); cplxmap(z,log(z) 3. %两端固定弦的级数解 %初速度为零,初位移不为零 clear;clc; function jxj N=50 t=0:0.005:2.0; x=0:0.001:1; ww=wfun(N,0); ymax=max(abs(ww); h= plot(x,ww,linewidth,3); axis( 0, 1, -ymax, ymax) sy= ; for n=2:length(t) ww=wfun(N,t(n); set(h,ydata,ww); drawnow; sy=sy,sum(ww); end function wtx=wfun(N,t) x=0:0.001:1; a=1; wtx=0; for I=1:N if I=7 wtx=wtx+0.05*( (sin(pi*(7-I)*4/7)-sin(pi*(7-I)*3/7). /(7-I)/pi-(sin(pi*(7+I)*4/7)-sin(pi*. (7+I)*3/7)/(7+I)/pi )*cos(I*pi*a*t).*sin(I*pi*x); else wtx=wtx+0.05/7*cos(I*pi*a*t).*sin(I*pi*x); end end %初速度不为零,初位移为零 function psi N=50; t=0:0.005:2.0; x=0:0.001:1; ww=psi1fun1(N,0); h= plot(x,ww,linewidth,3); axis( 0, 1, -0.08, 0.08) sy= ; for n=2:length(t) ww=psi1fun1(N,t(n); set(h,ydata,ww); drawnow; sy=sy,sum(ww); end function wtx=psi1fun1(N,t) x=0:0.001:1; a=1; wtx=0; for k=1:N Bk=2/(k*k*pi*pi)*(cos(3*k*pi/7)-cos(4*k*pi/7); wtx=wtx+Bk*sin(k*pi*t)*sin(k*pi*x); end 第四次练习 1. %mandelbrot 集的绘制 dxy=0.001;N1=2600;N2=2700;N=70; RGB=zeros(N1,N2,3); for m=1:N1 for n=1:N2 z=0;k=0; c=(-1.3+m*dxy)*i+(-2.1+n*dxy); while abs(z)=50 k=k+1; end s=10*k/(N+1); RGB(m,n,1)=mod(s,1); end end RGB(:,:,2)=1-RGB(:,:,1); B=100*RGB(:,:,1); RGB(:,:,3)=mod(B,1); image(RGB); %Julia 集的绘制 clc;clear x,y=meshgrid(-1.5:0.002:1.5); z=x+y*i; N1=1501; N=70; c=0.1+0.75*i; for m=1:N1 for n=1:N1 k=0; while abs(z(m,n)=80 k=k+1; end s=10*k/(N+1); RGB(m,n,1)=mod(s,1); end end RGB(:,:,2)=1-RGB(:,:,1); B=100*RGB(:,:,1); RGB(:,:,3)=mod(B,1); image(RGB) 2. %用 IFS 画羽毛树叶 %羽毛树 figure tt=100,500,1000,3000,6000,10000; for t=1:6 subplot(2,3,t) N=tt(t);v=rand(N,1); x=.5,zeros(1,N-1);y=zeros(1,N); for kk=2:N vv=v(kk); if vv=.02 x(kk)=0.5; y(kk)=0.27*y(kk-1); elseif vv=.17 y(kk)=.246*x(kk-1)+0.224*y(kk-1)-0.036; x(kk)=-.139*x(kk-1)+0.263*y(kk-1)+0.57; elseif vv=.3 x(kk)=.17*x(kk-1)-.215*y(kk-1)+.408; y(kk)=.222*x(kk-1)+.176*y(kk-1)+.0893; else x(kk)=.781*x(kk-1)+.034*y(kk-1)+.1075; y(kk)=-.032*x(kk-1)+.739*y(kk-1)+.27; end end plot(x(1:N),y(1:N),.,markersize,4) end %, 这个程序是利用 IFS 迭代画出三角形图形 % 几率三角形 N=50000; v=rand(N,1); ABC=-1, sqrt(2)*i, 1; xy=i; zeros(N-1,1); for kk=2:N if v(kk)1/3, xy(kk)=0.5*xy(kk-1)+0.5*ABC(1); elseif v(kk)2/3, xy(kk)=0.5*xy(kk-1)+0.5*ABC(2); else, xy(kk)=0.5*xy(kk-1)+0.5*ABC(3); end end figure plot(xy, . ,MarkerSize,4) axis equal 第五次练习 1. %无限长细杆热传导 X T theta=meshgrid(-5:0.2:6,0.01:0.01:1,0:0.01:1); a=2; U=1/(2*sqrt(pi*T).*exp(-(X-theta).2./(4*a2*T); u=0.01*trapz(U,3); for k=1:100 plot(X(1,:,1),u(k,:); axis(-5 6 0 2); pause(0.01); end 2. %达朗贝尔公式的绘画 %初位移不为零,初速度为零 u(1:140)=0; x=linspace(0,1,140); u(61:80)=0.05*sin(pi*x(61:80)*7); uu=u; h=plot(x,u,linewidth,3); axis(0,1,-0.05,0.05); set(h,EraseMode,xor) for at=2:60 lu(1:140)=0; ru(1:140)=0; lx=61:80-at; rx=61:80+at; lu(lx)=0.5*uu(61:80); ru(rx)=0.5*uu(61:80); u=lu+ru; set(h,XData,x,YData,u) ; drawnow; pause(0.1) end %初位移为零,初速度不为零 t=0:0.005:8; x=-10:0.1:10; a=1; X,T=meshgrid(x,t); xpat=X+a*T; xpat(find(xpat=1)=1; xmat=X-a*T; xmat(find(xmat=1)=1; jf=1/2/a*(xpat-xmat); h=plot(x,jf(1,:),linewidth,3) ; %画动画 set(h,erasemode,xor); axis(-10 10 -1 1) hold on for j=2:length(t) pause(0.01) set(h,ydata,jf(j,:); drawnow; end 3. %通电圆线圈生成的磁场(直接数值积分) clear; figure(1) a=0.35; y= -1:0.04:1; the=0:pi/20:2*pi; Y, Z,T=meshgrid(y,y,the); r=sqrt(a*cos(T).2+Z.2+(Y-a*sin(T).2); r3=r.3; dby =a*Z.*sin(T)./r3; by=pi/40*trapz(dby,3); dbz =a*(a-Y.*sin(T)./r3; bz=pi/40*trapz(dbz,3); subplot(1,2,1) %二维图形 bSY,bSZ=meshgrid(0:0.05:0.2,0); h1=streamline(Y(:,:,1),Z(:,:,1),by,bz,bSY,bSZ,0.1,1000); h2=copyobj(h1,gca); %用图形复制与旋转画其余的象限,代替下面三句 rotate(h2,1,0,0,180,0 0 0); h3=copyobj(allchild(gca),gca); rotate(h3,0,1,0,180,0 0 0); title(磁场的二维图,fontsize,15); for kk=1:4 %曲率较大的场线要取不同的步长 bSY,bSZ=meshgrid(0.2+kk*0.02,0); streamline(Y(:,:,1),Z(:,:,1),by,bz,bSY,bSZ,0.02/(kk+1),4500); streamline(-Y(:,:,1),Z(:,:,1),-by,bz,-bSY,bSZ,0.02/(kk+1),4500); end X,Y,Z=meshgrid(-0.5:0.04:0.5); %画三维图形 r2=X.2+Y.2+Z.2; for k=1:81 phi=pi/40*(k-1); costh=cos(phi); sinth=sin(phi); R3=(r2+a2-2*a*(X*costh+Y*sinth).(3/2); Bx0(:,:,:,k)=a*Z*costh./R3; By0(:,:,:,k)=a*Z*sinth./R3; Bz0(:,:,:,k)=a*(a-X*costh-Y*sinth)./R3; end Bx=pi/40*trapz(Bx0,4); %梯形积分 By=pi/40*trapz(By0,4); Bz=pi/40*trapz(Bz0,4); subplot(1,2,2) v=-0.2,-0.1,0,0.1,0.2; Vx, Vy, Vz=meshgrid(v,v,0); plot3(Vx(:),Vy(:),Vz(:),r*) streamline(X,Y,Z,Bx,By,Bz,Vx,Vy,Vz,0.01,2000); hold on; axis(-0.5,0.5,-0.5,0.5,-0.5,0.5); view(-23,26); box on; title(磁场的三维图,fontsize,15); t=0:pi/100:2*pi; plot(a*exp(i*t),r-,LineWidth,3); hold off; pause(1) %从不同角度观察 view(-44,-8) pause(1) view(-44,90) 4. 5. 第六次练习 1. %行星轨道 function guidao clear; clc; global G M G=1; M=5000; r0=100; E=-18,0,22; v0=sqrt(2*E+2*G*M/r0); figure axis(-400,200,-1000,1000); xlabel(x); ylabel(y); title(不同 E 时的不同曲线); s1=E0; hold on sun=line(0,0,color,r,marker,.,markersize,20); for k=1:3 t u=ode45(guidaofun,0:0.05:120,r0,0,0,v0(k)/r0); x,y=pol2cart(u(:,3),u(:,1); X=flipud(x);x; Y=-flipud(y);y; text(-100-(k-1)*100,-(k-1)*300,sk); comet(X,Y); plot(X,Y) end E=-10; a=-G*M/2/E; r0=a,50,15; v0=sqrt(2*E+2*G*M./r0); figure axis(-600,300,-300,300); xlabel(x); ylabel(y); title(E 相同 L 不同时的不同曲线); hold on axis equal sun=line(0,0,color,r,marker,.,markersize,20); for k=1:3 t u=ode45(guidaofun,0:0.05:180,r0(k),0,0,v0(k)/r0(k); x,y=pol2cart(u(:,3),u(:,1); X=flipud(x);x; Y=-flipud(y);y; text(-100-(k-1)*100,-(k-1)*300,sk); comet(X,Y); plot(X,Y) end function ydot=guidaofun(t,y) global G M ydot=y(2); y(1)*y(4)2-G*M/(y(1)2); y(4); -2*y(2)*y(4)/y(1); 2. %粒子散射 function lizisanshe line(0,0,marker,.,markersize,50,color,r); text(2,0,靶粒子,fontsize,14); xlabel(x); ylabel(y); axis(-10,20,-20,20) hold on Y=; for k=-5:5 t,y=ode23(lizisanshefun,0:0.1:32,-10,1,3*k,0); Y=cat(3,Y,y); end for t=1:300 plot(Y(t,1,1),Y(t,3,1),Y(t,1,2),Y(t,3,2),Y(t,1,3),Y(t,3,3),Y(t,1,4),Y(t,3,4), . Y(t,1,5),Y(t,3,5),Y(t,1,6),Y(t,3,6),Y(t,1,7),Y(t,3,7),Y(t,1,8),Y(t,3,8),. Y(t,1,9),Y(t,3,9),Y(t,1,10),Y(t,3,10),Y(t,1,11),Y(t,3,11) pause(0.001) end function ydot=lizisanshefun(t,y) ydot=y(2); 3*y(1)/sqrt(y(1).2+y(3).2).3; y(4); 3*y(3)/sqrt(y(1).2+y(3).2).3; 3. %水星进动 function shuixinjindong clear; theta,u=ode45(shuixinjindongfun,0:pi/100:30*pi,0.1,0); figure axis(-10,10,-10,10) hold on plot(0,0,*r) x,y=pol2cart(theta,1./u(:,1); plot(x,y) function ydot=shuixinjindongfun(theta,u) a=1;b=0.06; ydot=u(2); -u(1)+a+b*u(1)2; 第七次练习 1. %差分方法解两端固定的弦的振动 %初位移不为零,初速度为零 clear N=4010; dx=0.0024; dt=0.0005; c=dt*dt/dx/dx; x=linspace(0,1,420); u(1:420,1)=0; u(181:240,1)=0.05*sin(pi*x(181:240)*7); u(2:419,2)=u(2:419,1)+c/2*(u(3:420,1)-2*u(2:419,1)+u(1:418,1); h=plot(x,u(:,1),linewidth,3); axis(0,1,-0.05,0.05); set(h,EraseMode,xor,MarkerSize,18) for k=2:N set(h,XData,x,YData,u(:,2) ; drawnow; u(2:419,3)=2*u(2:419,2)-u(2:419,1)+c*(u(3:420,2). -2*u(2:419,2)+u(1:418,2); u(2:419,1)=u(2:419,2); u(2:419,2)=u(2:419,3); end %初位移为零,初速度不为零 clear N=4025; dx=0.0024; dt=0.0005; c=dt*dt/dx/dx; u(1:420,1)=0; x=linspace(0,1,420); u(1:420,1)=0; u(180:240,2)=dt*0.5; h=plot(x,u(:,1),linewidth,5); axis(0,1,-0.05,0.05); set(h,EraseMode,xor,MarkerSize,18) for k=2:N set(h,XData,x,YData,u(:,2) ; drawnow; %pause u(2:419,3)=2*u(2:419,2)-u(2:419,1)+c*(u(3:420,2). -2*u(2:419,2)+u(1:418,2); u(2:419,1)=u(2:419,2); u(2:419,2)=u(2:419,3); end 2. %用差分方法解一维热传导问题 N=500; dx=0.01; dt=0.000001; c=50*dt/dx/dx; A=500; b=5; x=linspace(0,1,100); uu(1:100,1)=(x-0.5).2; %初温度为零 figure h=plot(x,uu(:,1),linewidth,5); set(h,EraseMode,xor) axis(0,1,0,0.25); for k=2:200 uu(2:99,2)=(1-2*c)*uu(2:99,1)+c*(uu(3:100,1)+uu(1:98,1)-. b*dt/dx*(uu(3:100,1)-uu(2:99,1); uu(1,2)=0; uu(100,2)=0; %加上边界条件 uu(:,1)=uu(:,2); set(h,YData,uu(:,1) ; drawnow; pause(0.01) end 第八次练习 1. %自激振动 function zijizhengdong global x0 w0 v w u k; u=0.85, 1.02, 0.66, 1.08; x0=1; w0=1; v=1; w=0.44; T=2*pi/w; str1=庞加莱截面周期 1 吸引子; str2=庞加莱截面周期 2 吸引子; str3=庞加莱截面不变环面吸引子; str4=庞加莱截面奇怪吸引子; for k=1:4 t,y=ode23(zjzdfun,0:T/100:40*T,4,4); figure(k) subplot(2,1,1) plot(t,y(:,1); title(位移曲线); xlabel(x);ylabel(v); subplot(2,2,3) plot(y(3000:end,1),y(3000:end,2); axis(-3 3 -4 4) xlabel(x);ylabel(v); title(相图); subplot(2,2,4) axis(-3 1 -1 1) hold on for i=700:100:4000 plot(y(i,1),y(i,2),r.); end title(strk); end function ydot=zjzdfun(t,y) global x0 w0 v w u k; ydot=y(2); u(k)*(x02-y(1)2)*y(2)-y(1)*w02-v*cos(w*t); 第九次练习 1. %带电粒子在电磁场中的运动 function dcc global q m b E k; q=1.6*exp(-2); m=0.02; E=0.02;0;1; b=1;1;0; strd1=E!=0,B!=0; strd2=E=0,B!=0; strd3=E=!0,B=0; figure for k=1:3 t y=ode23(dccfun,0:0.05:20,0,0.01,0,6,0,0.01); axes(unit,normalized,position,. 0.0293+(k-1)*0.324,0.062,0.278+(k-1)*0.0324,0.6583); plot3(y(:,1),y(:,3),y(:,5),linewidth,2); grid on title(strdk,fontsize,12,fontweight,demi); view(-60,20); end function ydot=dccfun(t,y) global q m b E k; ydot=y(2); q*b(k)*y(4)/m; y(4); q*E(k)/m-q*b(k)*y(2)/m; y(6); 0; 2. %落体偏东 function ltpd global a w g k; h=200; w=2*pi/(60*60*24); g=9.8; tt=sqrt(2*h/g); t=0:0.01:tt; r0=0,0,0,0,h,0; a(1)=20*2*pi/360; a(2)=70*2*pi/360; k=1; t,r1=ode23(ltpdfun,t,r0); k=2; t,r2=ode23(ltpdfun,t,r0); plot(r1(:,3),r1(:,5),r2(:,3),r2(:,5); xlabel(偏东效应); ylabel(高度); legend(纬度=20,纬度=70); function ydot=ltpdfun(t,y) global a w g k; ydot=y(2); 2*w*y(4)*sin(a(k); y(4); -2*w*(y(6)*cos(a(k)+y(2)*sin(a(k); y(6); 2*w*y(4)*cos(a(k)-g; 3. 傅科摆 function fkb a=input(请输入纬度=); q=input(请按此格式依次输入x0,vx0,y0,vy0= ); c=a*pi/180; t,x=ode45(fkbfun,0:0.02:100,q, ,c); xlabel(x); ylabel(y); comet(x(:,1),x(:,3) function tt=fkbfun(t,x,c) a=(2*pi*sin(c)/100; b=9.8/67; tt=x(2); 2*a*x(4)-b*x(1); x(4); -2*a*x(2)-b*x(3); %下面是取纬度为 60 度,x0,vx0,y0,vy0= 0 1 0 1的图形 4.1%非齐次边界条件下弦的振动 我们用二维的图形来表示一维的弦,让弦的侧面不受力,左端固定,右端作受迫振动. 在 Options/Axes Limits 下选择 x 轴范围为 01,y 轴范围为 01.以原点为顶点画一个长为 1 宽为 0.4 的矩形,矩形的顶点为(0, 0), (1, 0), (1, 0.4), (0, 0.4). 按照题意,矩形的左边界是齐次的狄里克利边界条件,可取 h=1, r=0,右边界是非齐次的 狄里克利边界条件,可取 h=1, r=0.01*sin(6*t),上下边界则取齐次的诺伊曼边界条件,即 g=0,q=0.方程的设置是 hyperbolic 型, 系数是 c=1,a=0,f=0,d=1.为了有足够的精度,初始化的网 格要再作两次细分.在解方程的参数设置对话框 Solve Parameters 中,将 Time 设为 0:0.1:0.5, u(t0)和 u(t0)都设为 0,其余不变.而作图选项对话框 Plot Parameters 中,各项选择如下,在 Plot type 下,选 Color 和 Height(3-D Plot),在 Property 下,对应的位置中都选 User entry,在 User entry 下,再在相应的位置都输入 10 * u,这样做的目的是,弦的振幅太小,为了达到更好的显示效果, 所以将振幅放大 10 倍来画图. 4.2 %在圆形域内求解 0u = 是满足边界条件 0 |cosuA = = 将坐标轴设为1.51.5, 11xy ,选坐标轴的原点在圆心,画半径为 0.4 的圆,在 Boundary mode 下设置边界条件,选择 Dirichle 条件,h=1,r=0.5*x,方程类型选 Elliptic 型。 作图参数选择 Color %在圆形域内求解 0u = 是满足边界条件为 0 |BsinuA = =+ 操作跟以上一样,只是 r=1+sin(atan(y/x) 4.3 %半圆形薄板,半径为 0 ,板面绝热,边界直径上温度保持零度,圆周上保持 0 u ,求稳 定状态下的板上温度分布。将坐标轴设为1.51.5, 11xy ,选坐标轴的原点在圆 心,画一圆并命名为 E1,然后通过它的直径作一矩形,命名为 R1,在 set formula 上输入 E1-R1。在 Boundary mode 下设置边界条件,下边设置为 Dirichlet 条件,h=1,r=0;上两边设 置为 Dirichlet 条件, h=1, r=2。 选择 Elliptic 型方程, 细分网格两次, plot 参数选 Color, contour, 再点击 plot 作图 4.4% 矩 形 膜 的 振 动 , 为 了 求 数 值 解 , 任 取a=1,b=1,c=2,A=1, 求 解 区 域 可 取 02,01xy,边界条件为四边固定,所以不必改变.方程取 Hyperbolic(双曲型),方程的 形式为() tt d uc uauf+=,在系数对话框中取=1,a=0,f=0,d=1.方程求解的时间范围 可取 0:0.1:4 ,初速则取零,而在初始位移一栏中输入0.1* .*(1).*sin(* )xxpiy. 作图时选 择 Color,Height (3-D plot), Animation, 在选项 Options 中, Animation rate 一栏中 填入 5,Number of repeats 一栏中填入 2.另外在 Colormap 一栏中选 pink,在动画时间 (Time for plot)一栏中填入 2.最后点击按钮 Plot 即可. 可以看到,是初始位移形成的波在膜上来回传 播. 4.5 静电场中的介质球,用偏微分方程工具箱求解这个问题.选坐标轴的原点在球心,z 轴平 行于场的方向,则问题与无关,取过球心平行于场强方向的截面来作分析.画一个中心在原 点的2 2的正方形,在正方形中间再画一个圆,圆心在(0,0)处,半径为 0.3.注意这时在 Set fomula 对话框中的公式是 SQ1C1,表示求解区域是二者的合并. 矩形所有的边界条件是狄里克利边界条件,都取相同的 h=1, r=y,而圆的边界在矩形内部, 自动由衔接条件决定,不必再设边界条件.这是偏微分方程工具箱的特殊功能,应该掌握. 这是静电场问题,要用偏微分方程工具箱的专用格式.在界面的工具栏中将方程的类型选 为 Electrostatic.在设置方程的参数时,先选菜单 PDE Mode,再在圆内双击鼠标,打开对话栏以 后,选 Eliptic 方程,方程系数 epsilon 取 0.2,rho 取 0,关闭对话框.然后再选菜单 PDE Mode,在圆 外双击鼠标,打开对话栏以后,选 Eliptic 方程,方程系数 epsilon 取 2,rho 取 0,关闭对话框. 网格初始化以后还要作一次细分.作图的选项为 Contour 和 Arrrows,直接作图就是了 第十次练习 1. %图形界面练习 function varargout = mygui(varargin) gui_Singleton = 1; gui_State = struct(gui_Name, mfilename, . gui_Singleton, gui_Singleton, . gui_OpeningFcn, mygui_OpeningFcn, . gui_OutputFcn, mygui_OutputFcn, . gui_LayoutFcn, , . gui_Callback, ); if nargin end if nargout varargout1:nargout = gui_mainfcn(gui_State, varargin:); else gui_mainfcn(gui_State, varargin:); end % End initialization code - DO NOT EDIT % - Executes just before mygui is made visible. function mygui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin unrecognized PropertyName/PropertyValue pairs from the % command line (see VARARGIN) % Choose default command line output for mygui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes mygui wait for user response (see UIRESUME) % uiwait(handles.figure1); % - Outputs from this function are returned to the command line. function varargout = mygui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout1 = handles.output; function edit1_Callback(hObject, eventdata, handles) % - Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc end % - Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % - Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc end % - Executes on selection change in listbox1. function listbox1_Callback(hObject, eventdata, handles) vlist=get(handles.listbox1,value) if vlist=1 set(handles.edit1,string,1) else set(handles.edit1,string,3) end function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc end % - Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) cla; popval=get(handles.popupmenu1,value); vlist=get(handles.listbox1,value) N=str2num(get(handles.edit1,string); if vlist=1 set(handles.edit1,string,1); if popval=1 m=0,1; m=m,1+m*exp(pi/3*i),2+m*exp(2*pi/3*i),2+m; plot(m); axis equal else triangle(1); end else if popval=1 koch(N); else tria

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论