已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第22章 二次函数,22.1.3 二次函数的y=ax2+k的图像 和y=a(x-h)2的图像,探究1,(1) 抛物线y=x2+1,y=x21的开口方向、对称轴、顶点各是什么?,抛物线y=x2+1:,开口向上,对称轴是y轴,顶点为(0,1).,抛物线y=x21:,开口向上,对称轴是y轴,顶点为(0,1).,(2)抛物线y=x2+1,y=x21与抛物线y=x2的异同点:,y=x2+1,y=x21,y=x2,相同点:,形状大小相同,开口方向相同,对称轴相同,不同点:,顶点的位置不同, 抛物线的位置也不同,(3)抛物线y=x2+1,y=x21与抛物线y=x2的关系:,y=x2+1,抛物线y=x2,抛物线 y=x21,向上平移 1个单位,抛物线y=x2,向下平移 1个单位,y=x21,y=x2,抛物线 y=x2+1,函数的上下移动,思考: 1、抛物线y=-x2+1,y=-x21与抛物线y=-x2的关系:,抛物线y=-x2,抛物线 y=-x21,向上平移 2个单位,抛物线y=-x2,向下平移 1个单位,抛物线 y=-x2+1,2、抛物线y=ax2+k与抛物线y=ax2关系?,归纳1: 函数y=ax2 (a0)和函数y=ax2+k (a0)的图象形状 ,开口方向 ,对称轴 , 只是位置和顶点不同;当k0时,函数y=ax2+k的图象可由y=ax2的图象向 平移 个单位得到,当k0时,函数y=ax2+k的图象可由y=ax2的图象向 平 移 个单位得到.,上加下减,相同,上,k,下,|k|,相同,相同,当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 ; 当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 ,当x= 时,取得最 值,这个值等于 。,y=-x2-2,y=-x2+3,y=-x2,y=x2-2,y=x2+1,y=x2,向上,y轴,(0,k),减小,增大,0,小,k,向下,y轴,(0,k),增大,减小,0,大,k,观 察 思 考,归纳2,向上,向下,(0 ,k),y轴,y轴右侧, y随着x的增大而减小。 y轴左侧, y随着x的增大而增大。,y轴右侧, y随着x的增大而增大。 y轴左侧, y随着x的增大而减小。,x=0时,y最小= k,x=0时,y最大=k,抛物线y=ax2 +k (a0)的图象可由y=ax2的图象通过上下平移|c|个单位得到.,向左平移1个单位,向右平移1个单位,抛物线 与 的开口方向、对称轴、顶点?,(3)抛物线 有什么关系?,左右移动, 左加右减,探究1,(2)抛物线 有什么异同点?,向右平移2个单位,向左平移2个单位,在同一坐标系中作出下列二次函数:,(1)观察三个函数的 开口方向,对称轴,顶点.,左右移动, 左加右减,抛物线y=a(xh)2和抛物线y=ax2形状 , 还有开口方向 ,位置 ,顶点 , 还有对称轴 . 抛物线y=a(xh)2可以由抛物线y=ax2 平移得到,h0时, 平移 个单位, h0时, 平移 个单位.,归纳3,相同,相同,不同,不同,不同,左右,向右,h,向左,二次函数y=a(x-)2的性质,向上,向下,直线,在对称轴右侧递增 在对称轴左侧递减,在对称轴右侧递减 在对称轴左侧递增,(,0),归纳4,x=h时,y最小=0,x=h时,y最大=0,点拨提升,1、抛物线y=ax2c与y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025关于金融机构的贷款合同范本
- 2025承包工程不包含材料合同模板
- 2025年保险合同的订立与生效
- 2025合同样本参考范文
- 2021年北京重点校高一(下)期中物理试卷试题汇编:万有引力与宇宙航行章节综合
- 时间管理大师高端玩家
- 2025卓越的房地产销售合同范本
- 线上法律服务培训课件
- 肾内科慢性肾脏病饮食指导要点
- 校刊部未来工作规划
- 2026年某气调库建设项目可行性研究报告
- 程序员工作展望
- 海龙屯景区的介绍
- (2025年)职业卫生健康培训考试题库+答案
- 2025贵州毕节市中医医院招聘暨人才引进编外聘用专业技术人员78人考试笔试参考题库附答案解析
- 浙江省杭州市学军中学2025-2026学年高一10月月考语文试题(原卷版)
- 2025西南有色昆明勘测设计(院)股份有限公司专业技术人员招聘(9人)考试笔试备考试题及答案解析
- 2025中国航空工业集团陕飞校园招聘笔试历年参考题库附带答案详解
- 2025年公务员(国考)试题预测试卷附参考答案详解AB卷
- 2025-2026学年苏科版七年级数学上册期中模拟测试卷(1-4章)(含答案)
- 人工智能通识教程 课件 第10章-AIGC技术
评论
0/150
提交评论