空间向量的数乘运算(公开课).ppt_第1页
空间向量的数乘运算(公开课).ppt_第2页
空间向量的数乘运算(公开课).ppt_第3页
空间向量的数乘运算(公开课).ppt_第4页
空间向量的数乘运算(公开课).ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.2 空间向量的数乘运算,O,结论:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量. 因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.,一、空间向量的数乘:,2、空间向量的数乘的性质,1、定义:,实数 与空间向量 的乘积 仍然是一个向量,称为空间向量的数乘,3、空间向量的数乘的运算律,(3)数乘结合律:,(1)数乘分配律1:,(2)数乘分配律2:,1、定义:,如果表示空间向量的有向线段所在直线互相平行或重合, 则这些向量叫做,共线向量,二、空间中的共线向量,(或平行向量),(3)非零共线向量的传递性:,(1)零向量与任一向量共线,,(4)空间共线向量定理:,对空间任意两个向量,有且只有一个实数 , 使,思考1:为什么要强调,思考2:这个定理有什么作用?,1、判定两个向量是否共线,2、判定三点是否共线,若P为A,B中点, 则,向量参数表示式,推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式 其中向量 叫做直线 的方向向量.,若 则A、B、P三点共线。,A、B、P三点共线,结论1:,三、共面向量:,1.平行于同一平面的向量,叫做共面向量.,注意:空间任意两个向量是共面的,但空间任意三个向量,既可能共面,也可能不共面,由平面向量基本定理知,如果 , 是平面内的两个不共线的向量,那么对于这一平面内的任意向量 ,有且只有一对实数 , 使,如果空间向量 与两不共线向量 , 共面,那么可将三个向量平移到同一平面 ,则有,那么什么情况下三个向量共面呢?,反过来,对空间任意两个不共线的向量 , ,如果 ,那么向量 与向量 , 有什么位置关系?,C,2.共面向量定理:如果两个向量 , 不共线,,则向量 与向量 , 共面的充要条件是,存在实数对x,y使,推论:空间一点P位于平面ABC内的充要条件是存在有序实数对x,y使,C,对空间任一点O,有,填空:,1-x-y,x,y,C,式称为空间平面ABC的向量表示式,空间中任意平面由空 间一点及两个不共线的向量唯一确定.,由此可判断空间任意四点共面,共面向量定理的剖析,如果两个向量 a,b 不共线,(性质),(判定),P、A、B、C 四点共面,结论2:,解析:由共面向量定理知,要证明P、A、B、C四点共面,只要证明存在有序实数对(x,y)使得,例1.已知A、B、C三点不共线,对于平面ABC外的任一点O,确定在下列各条件下,点P是否与A、B、C一定共面?,练习3.下列说法正确的是: (A)平面内的任意两个向量都共线 (B)空间的任意三个向量都不共面 (C)空间的任意两个向量都共面 (D)空间的任意三个向量都共面,例2(课本例)如图,已知平行四边形ABCD,从平 面AC外一点O引向量 , , , , 求证: 四点E、F、G、H共面; 平面EG/平面AC.,例2 (课本例)已知 ABCD ,从平面AC外一点O引向量,求证:四点E、F、G、H共面;,平面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论