




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化工行业二氧化碳减排潜力分析模型及应用 摘要:化工行业是全球耗能和二氧化碳排放大户,由于其产品结构复杂,减排影响因素众多,探索其二氧化碳减排潜力和路径成为国内外研究的焦点之一。本文结合化工行业的产品结构特点构建了一套化工行业二氧化碳减排潜力综合分析模型:首先结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法。最后以中国西部唯一的直辖市、国家首批低碳试点城市重庆市的化工行业为例进行应用分析。结果显示,随着石油化工的引进,未来重庆化工行业二氧化碳排放总量仍将保持高速增长的态势,2020年之前难以达到拐点;而随着精细化工比例的不断提高,产品能效水平的改善,未来二氧化碳排放强度下降明显。最后结合中国化工行业发展的实际提出化工行业低碳发展应坚持产品结构调整和技术进步并行的原则。 关键词:化工行业;二氧化碳;两阶段核算模型;减排潜力; 作者简介:顾佰和(1987-),男(满族),辽宁丹东市人,中国科学院科技政策与管理科学研究所,博士研究生,研究方向:绿色低碳发展战略与政策分析. 1引言 化工行业是经济社会发展的支柱产业,同时也是耗能和温室气体排放大户。国际石油和化工联合会的统计数据显示,xx年世界二氧化碳排放量约为460亿吨,其中化学工业的二氧化碳排放为33亿吨,约占7.1%1。中国是世界上最大的化工制品国之一。其中合成氨、电石、硫酸、氮肥和磷肥的产量均排名世界第一2。2000年到xx年,中国的化工行业工业产值增长迅速,其中几种主要化工制品例如:乙烯、电石、烧碱、硫酸、甲醇、硝酸等产品的产量在此期间增长了50%以上。2000-xx年化学原料及化学制品制造业能源消费量逐年上升,年均增长8.86%3,占全社会能源消费总量的比重基本保持在10%左右。 我国化工行业产品结构不合理,高消耗、粗加工、低附加值产品的比重偏高,精细化率偏低。美国、西欧和日本等发达国家和地区的化工行业精细化率已经达到60%70%,而目前我国化工行业的精细化率不到40%。且我国化工行业工艺技术落后,高耗能基础原材料产品的平均能耗比国际先进水平要高20%左右,因此我国化工行业存在较大的节能减排空间4。那么我国化工行业到底有多大的减排潜力,如何预测化工行业的温室气体减排潜力成为决策者和研究人员关注的焦点之一。 国内外学者围绕行业温室气体减排潜力评估展开了一系列研究,但研究集中于钢铁行业5-6、电力行业7-8、交通行业9-10、水泥行业11-12等产品结构较为单一的行业。而由于化工行业的产品种类繁多,且工艺流程各不相同,目前对于化工行业的温室气体减排潜力研究,从研究对象上主要集中于少数几种产品和部分工艺流程。Zhou13等全面细致的核算了中国合成氨生产带来的二氧化碳排放和未来的减排潜力,并据此提出了促进减排的政策措施。Neelis14等学者从能量守恒的角度研究了西欧和新西兰化工行业的68种主要工艺流程理论上的节能潜力。IEA15-16在八国集团的工作框架下,评估了化学和石油工业中49个工艺流程应用最佳实践技术(BestPracticeTechnology)短期内所带来的能效改善潜力。Patel17针对化学中间体和塑料等有机化学品给出了累积能源需求和累积二氧化碳排放量的核算流程和核算结果。 就关注的减排影响要素而言,主要涉及技术和成本两方面。技术层面上,Park18等通过调查五种节能减排的新技术,使用混合的SD-LEAP模型评估了韩国石油炼制行业的二氧化碳减排潜力;Zhu19从技术进步的视角采用情景分析方法从整个行业的层面研究了中国化工行业的二氧化碳减排潜力,并提出一系列促进化工行业碳减排的措施;卢春喜20重点概述了气-固环流技术在石油炼制领域中的研究与应用进展;王文堂21分析了目前化工企业节能技术进步所遇到的障碍,并对促进企业采取节能减排技术提出建议。成本方面,Ren22等对蒸汽裂解制烯烃和甲烷制烯烃两种方式的节能和碳减排成本进行了对比;戴文智等23将环境成本作为石油化工企业蒸汽动力系统运行总成本的一部分,构建了混合整数非线性规划(MINLP)模型,优化了多周期运行的石油化工企业蒸汽动力系统;高重密等24从综合效益角度出发提出了化工行业实施碳减排的相关建议以及化工园区实施碳减排的管理模式;何伟等25设计了节能绩效-减排绩效关系图及节能绩效、减排绩效与经济效益协调关系三角图。 在研究方法上,通过对以上文献的归纳,不难发现情景分析已成为行业温室气体减排潜力的主流分析框架。已有的国内外大部分相关研究都采用情景分析方法5-12,13,18,19。情景分析方法是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细地、严密地推理和描述来构想未来各种可能的方案26。相比弹性系数法、趋势外推法、灰色预测法等传统的定量预测方法,情景分析法以多种假定情景为基础,强调定性与定量分析相结合。情景分析法在进行预测时,不仅可根据预测对象的内在产生机理从定量方法上进行推理与归纳,还可对各不确定因素(自变量)的几种典型的可能情况采取人为决策,从而更为合理地模拟现实。因此,情景分析法更加适用于影响因素众多、未来具有高度不确定性的问题的分析。此外,情景分析法与传统预测法还有一点显著不同。传统预测法试图勾绘被预测对象未来的最可能发生状况,以及这种可能程度的大小。而情景分析法采取的是一种多路径式的预测方式,研究各种假设条件下的被预测对象未来可能出现何种情况。在情景分析中,各种假设条件不一定会自然出现,但通过这样的分析,可帮助人们了解若要被研究对象出现某种结果需要采取哪些措施以及需要何种外部环境。 综观国内外学者的研究,有以下特点:从研究对象上来说,更多侧重于化工行业产品层面二氧化碳减排潜力的研究,而鲜有从行业整体层面的研究;从研究要素上来说,一般只考虑单一要素对二氧化碳减排的贡献,鲜有综合考虑化工行业内部结构调整、技术进步、政策变动等多因素的研究。鉴于此,本文结合化工行业的产品结构特点构建了一套化工行业二氧化碳减排潜力综合分析模型:首先结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法,探索不同情景下化工行业的减排潜力和路径。最后运用该方法以中国西部唯一的直辖市、国家首批低碳试点城市重庆市的化工行业为例进行应用分析。最后提出了我国化工行业低碳转型的对策建议。 2模型与分析方法 2.1核算边界 化工行业的二氧化碳排放包括两部分:一部分是由燃料燃烧产生的排放,另外一部分是工业过程和产品使用产生的排放。其中燃料燃烧产生的排放又分为化石燃料产生的直接排放以及电力、热力消耗产生的间接排放,为了体现化工行业对区域二氧化碳减排的贡献,本文将电力和热力消耗产生的间接排放也计算在内。此外,一些化工产品在生产活动中是吸碳的,例如尿素的生产,这部分被吸收的二氧化碳需要在计算中扣除。 2.2化工行业二氧化碳排放两阶段核算模型 为了能够得到化工行业全行业的二氧化碳排放量,同时能够综合考虑多种因素探索其二氧化碳减排潜力,本文针对化工行业特点构建了一种两阶段二氧化碳排放核算模型。模型中的主要参数名称及其含义见表1。 2.2.1基于全行业视角的核算方法 行业视角核算方法主要针对化工行业二氧化碳排放的历史和现状。本文所研究的化工行业包括国民经济行业分类中的化学原料及化学制品制造业、化学纤维制造业和橡胶制品业。化工行业是终端能源消费部门,通过能源平衡表,可以得到化工行业分能源品种的能源消耗量,根据xx年IPCC国家温室气体清单指南推荐的方法二,化工行业由燃料燃烧引起的二氧化碳排放量为: 部分产品在工业过程和产品使用中会产生二氧化碳排放,这部分排放量为: 此外,一些产品在生产过程中会吸收二氧化碳,被吸收的二氧化碳量为: 因此,基于行业视角核算的化工行业温室气体排放量为: 表1主要参数名称及其含义下载原表 表1主要参数名称及其含义 2.2.2基于产品视角的核算方法 化工行业产品种类虽多,但能耗相对集中在少数几种高耗能产品上,xx年,合成氨、乙烯、烧碱、纯碱、电石、甲醇这6种高耗能产品的能源消耗量占中国化工行业的54%19。现有的化工行业节能减排政策大部分集中在几种主要的高耗能产品上,因此从产品层面探讨化工行业的二氧化碳排放核算更具有现实意义。本文建立一种基于产品视角的核算方法来预测化工行业未来的二氧化碳排放。首先将化工行业由燃料燃烧引起的二氧化碳排放分为高耗能产品和其他产品两部分。某种高耗能产品的二氧化碳排放量为: 其中EMi为第i种高耗能产品单位产品的二氧化碳排放量,计算方法见式(6): 由于除主要耗能产品外的其他产品种类多,单个产品的能源消耗量不大,能源利用效率数据难以获得,所以难以从单位产品能耗的角度对这部分产品的二氧化碳排放进行核算,本文将这部分产品作为一个整体来考虑,引入单位产值的二氧化碳排放来解决这一问题。其他产品合计的二氧化碳排放量为: 工业过程和产品使用排放以及产品对二氧化碳的吸收同基于行业视角的核算方法。 因此,基于产品视角核算的化工行业温室气体排放量为: 2.3减排潜力情景分析模型 2.3.1减排潜力的定义 潜力就是存在于事物内部尚未显露出来的能力和力量。而减排潜力即存在于某一温室气体排放主体内尚未发掘的减排能力。为了能够量化表达,本文将减排潜力进一步定义为某一温室气体排放主体通过努力可以实现的减排量。 本文所关注的是化工行业未来的二氧化碳减排潜力,这里为化工行业设置多种不同的发展情景。不同情景下的行业内部结构、技术水平、所面临的宏观和微观政策各不相同,相应的会得到不同的二氧化碳排放路径。其中一种情景称之为BAU(BusinessAsUsual)情景,也叫照常发展情景,该情景下化工行业现有的能源消费和经济发展趋势与当前的发展趋势基本保持一致,沿用既有的节能减排政策和措施,不特别采取针对气候变化的对策。其他情景中化工行业分别针对气候变化做不同程度的努力。所谓化工行业的二氧化碳减排潜力,针对关注的指标不同,有两类不同的含义。一是绝对二氧化碳减排潜力,即目标年份中其他各情景的二氧化碳排放量相比BAU情景的减少量;二是相对二氧化碳减排潜力,即目标年份的二氧化碳排放强度相比基准年份降低的百分比。 通过同一年份各情景与BAU情景二氧化碳排放总量的横向比较,以及同一情景不同年份间二氧化碳排放强度的纵向比较,便可分别得到化工行业的绝对和相对二氧化碳减排潜力。 2.3.2情景分析模型 根据减排潜力的定义,y年份化工行业的绝对二氧化碳减排潜力为: 其中CEyBAU为y年份化工行业BAU情景的二氧化碳排放总量,CEly为y年份化工行业情景l下的二氧化碳排放总量。 相对二氧化碳减排潜力是针对二氧化碳排放强度设置的指标,化工行业的二氧化碳排放强度为: ,其中V为化工行业的工业增加值。由此可以得到,y年份化工行业的相对二氧化碳减排潜力为: 其中,为基准年化工行业的二氧化碳排放强度,CEIly为y年份化工行业在情景l下的二氧化碳排放强度。 3案例分析 3.1对象描述 本文应用上述模型方法以重庆市化工行业为例展开分析。化工行业是重庆市重要的支柱产业之一。xx年重庆市化工行业实现工业总产值902亿元,占重庆市工业总产值的比重达到7.6%。重庆市缺煤少油,但天然气资源丰富,重庆市是国内门类最齐全、产品最多,综合技术水平最高的天然气化工生产基地。但重庆市化工行业部分产品的工艺技术路线落后,产品结构有待调整优化。xx年重庆市化工行业的精细化率仅约20%,低于全国的30%-40%的平均水平,更低于发达国家的60%-70%的水平。 根据重庆市化工行业发展现状和趋势,本文选取了合成氨、烧碱、纯碱、甲醇、石油加工、乙烯和钛白粉这七种产品作为重庆市化工行业的主要耗能产品。其中,xx年合成氨、烧碱、纯碱、甲醇和钛白粉这五种产品合计的二氧化碳排放占化工行业总体排放的46.5%,而石油加工、乙烯将是重庆市化工行业“十二五”期间重点发展的石油化工产业链中的上游产品。本文利用前文所述的化工行业二氧化碳减排潜力分析模型,分析了重庆市化工行业分别到xx年和2020年的二氧化碳排放变化情况,并通过不同情景间的比较得到其减排潜力。 3.2情景设置 化工行业的能源消耗和二氧化碳排放主要由以下几方面因素决定:产业发展规模,产业内部结构,高耗能产品的产量,技术结构的调整,产品的技术进步率等。本文根据以上这些因素为重庆市化工行业设计了三个发展情景。 在这三种情景中,重庆化工行业未来经济发展变化的基本趋势保持一致。xxxx年重庆市化学工业总产值年均增长29.5%,未来重庆化工行业将继续保持比较高的经济增长速度。根据重庆市化工行业三年振兴规划,到xx年重庆市化工行业总产值将达到2000亿元。由此本文设定xx-xx年重庆市化学工业总产值的年均增长率为23.0%,xx-2020年年均增长率降低到20.0%。与此不同的是,为了支持这种经济的发展需求,三种情景分别设定了不同的能源消费增长和利用模式,具体描述如下。 表2情景定性描述表下载原表 表2情景定性描述表 3.3数据及处理过程 重庆市化工行业总产值和增加值现状数据重庆市统计年鉴(xx-xx),化工行业未来总产值数据重庆市化工行业三年振兴规划;行业内部结构现状数据重庆市化工行业统计公报(xx-xx);化工行业分能源品种能源消耗量数据中国能源统计年鉴(xx-xx);各主要耗能产品产量数据重庆市统计年鉴(xx-xx);各主要高耗能产品综合能耗参照中国化学工业年鉴、中国低碳发展报告xxxx、高耗能产品能耗限额标准(由国家标准化管理委员会制定和颁布)和能效及可再生能源项目融资指导手册(xx),各主要高耗能产品未来所采用的工艺比例和能源消耗参考2050中国能源和碳排放报告中的设置,不同的情景将设置不同的技术参数;各种一次能源的二氧化碳排放因子以及各主要耗能产品工业过程与产品使用的排放因子均省级温室气体清单编制指南,电力的二氧化碳排放因子参考中国国家发改委每年公布的“中国区域电网基准线排放因子的公告”,蒸汽的二氧化碳排放因子通过重庆市的能源平衡表间接计算得到,单位尿素吸收的二氧化碳量用尿素的碳含量(12/60)乘以二氧化碳与碳的转换因子(44/12)得到。主要耗能产品的单价参照中国化工产品网的报价。 3.4结果分析 3.4.1绝对减排潜力 (1)行业总体排放情况 通过模拟计算,重庆市化工行业未来的二氧化碳排放量如下图1所示。 图1重庆化工行业各情景二氧化碳排放总量 图1重庆化工行业各情景二氧化碳排放总量下载原图 随着石油化工的引进,未来重庆化工行业将进入一个飞速发展的阶段。三个情景的二氧化碳排放总量都呈明显的上升趋势,但由于所采取的结构调整和技术改进措施不同,二氧化碳排放总量上升的幅度有所不同。 BAU情景中,由于精细化工比例不高,到2020年只为45%,技术进步率有限,二氧化碳排放上升幅度最大。xx年和2020年的二氧化碳排放量分别为xx年的7.5和13.3倍。 节能情景中,化工行业的精细化工比例相比BAU情景有所提高,到2020年达到50%,工艺设备的技术进步也更显著。xx和2020年二氧化碳排放总量比BAU情景分别低492万吨和1338万吨。 低碳情景中,化工行业的精细化比例进一步提高,到2020年达到55%左右,主要耗能产品的技术水平达到或接近国际先进水平。xx年和2020年二氧化碳排放总量比BAU情景分别低985万吨和2644万吨。 (2)主要耗能产品排放情况 xx年,合成氨、烧碱、纯碱、甲醇和钛白粉这五种主要耗能产品合计的二氧化碳排放量占重庆市化工行业总体二氧化碳排放的46.5%。未来由于化工行业产品结构的调整,高能耗产品产出占化工行业的比例越来越低,加上化工行业工艺技术的改善,尤其对主要耗能产品进行的技术改造,使得主要耗能产品的二氧化碳排放量在重庆化工行业二氧化碳排放总量中所占的比重越来越低,见下图2: 图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重 图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重下载原图 BAU情景中,xx年八种主要耗能产品占化工行业总体二氧化碳排放的比重为29.7%,到2020年降低到18.4%。 节能情景中,xx年八种主要耗能产品占化工行业总体二氧化碳排放的比重降至26.2%,到2020年进一步降低到16.7%。 低碳情景中,xx年八种主要耗能产品占化工行业总体二氧化碳排放的比重为22.0%,到2020年进一步降低到15.2%。 虽然未来各情景主要耗能产品的二氧化碳排放占化工行业总体的比重有所下降,但仍在化工行业中占有重要的地位,未来在进行产品结构调整的同时,主要耗能产品的节能减排仍将是化工行业实现二氧化碳减排的重要方面。 3.4.2相对减排潜力 (1)行业总体相对减排潜力 重庆市化工行业未来的二氧化碳排放强度(万元GDP二氧化碳排放量)如下图3所示。 图3重庆化工行业各情景二氧化碳排放强度 图3重庆化工行业各情景二氧化碳排放强度下载原图 与排放总量显著上升形成鲜明对比的是,重庆化工行业的二氧化碳排放强度下降明显。原因在于重庆化工行业在未来十年将进入一个飞速发展的阶段,2020年重庆化工行业的增加值相比xx年将增加30倍。而由于对高耗能产品规模的控制,精细化工比例的大幅提高,化工行业内部结构得到不断优化;同时由于化工行业的能效水平不断提高,到2020年逐步接近或达到国际先进水平,使得三个情景中,2020年重庆化工行业的二氧化碳排放总量相比xx年分别只增加了13.3、11.6和9.9倍。从而导致三个情景化工行业的二氧化碳排放强度均有较大幅度的下降。各情景二氧化碳排放强度相比xx年降低幅度见下表3。 表3重庆化工行业各情景二氧化碳排放强度相比xx年降低百分比下载原表 表3重庆化工行业各情景二氧化碳排放强度相比xx年降低百分比 (2)主要耗能产品相对减排潜力 随着节能减排技术的不断改进和推广,未来重庆市化工行业各主要耗能产品的单位二氧化碳排放量将不断降低,由于篇幅有限,本文仅以合成氨为例进行分析。 重庆市合成氨均以天然气为原料,xx年重庆市大型天然气制合成氨的比重仅为3.8%。单位合成氨二氧化碳排放量为3.0吨。若扣除末端尿素固碳量,则xx年单位合成氨二氧化碳排放量为2.7吨。未来由于大型天然气制合成氨所占比重越来越高,使得重庆市未来单位合成氨二氧化碳排放显著降低,见下图4和图5。 图4单位合成氨二氧化碳排放量 图4单位合成氨二氧化碳排放量下载原图 图5单位合成氨二氧化碳净排放量(去除尿素固碳) 图5单位合成氨二氧化碳净排放量(去除尿素固碳)下载原图 BAU情景中,xx年大型天然气制合成氨的比重达到50%,合成氨二氧化碳排放总量占化工行业总排放的6.7%,单位合成氨二氧化碳排放降低到2.2吨;2020年大型天然气制合成氨的比重达到80%,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辅警招聘考试综合提升测试卷含完整答案详解(名校卷)
- 中班社会领域教案《乘坐公共汽车》反思
- 住宅楼基础工程安全管理方案
- 2025年城市污水处理厂深度处理工艺能耗分析与降低策略评估报告
- 2025年教育行业质量评估与认证体系评价标准与方法研究报告
- 2025年机械制造企业服务化转型中的智能制造与工业4.0解决方案报告
- 2025年成人教育终身学习体系构建与平台运营中的教育投资分析报告
- 信访信用治理制度的生成与作用逻辑
- 气球广告公司合伙协议书
- 河南省南阳市宛城区等2地2025-2026学年高二上学期开学考试思想政治试卷(含答案)
- 打扫卫生的社会实践报告
- 小学《道德与法治课程标准2022版》测试题
- 市政污水管道施工组织设计
- 服装陈列课件
- 产品认证控制程序
- 新教材-人教A版高中数学选择性必修第一册-第一章-空间向量与立体几何-知识点及解题方法提炼汇总
- 国家临床版20肿瘤形态学编码(M码)
- 国开电大组织行为学任务四调查报告
- 施工现场安全监理危险源清单一览表
- GB/T 233-2000金属材料顶锻试验方法
- 颈椎DR摄影技术-
评论
0/150
提交评论