




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2 解一元二次方程,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,21.2.4 一元二次方程的根与系数的关系,学习目标,1.探索一元二次方程的根与系数的关系.(难点) 2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点),导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实数根.,讲授新课,算一算 解下列方程并完成填空: (1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.,-4,1,2,3,-1,x1+x2=-3,x1 x2=-4,x1+x2=5,x1 x2=6,猜一猜,(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?,重要发现 如果方程x2+px+q=0的两根是x1,x2,那么x1+x2= -p , x1 x2=q.,(x-x1)(x-x2)=0.,x2-(x1+x2)x+x1x2=0,,x2+px+q=0,,x1+x2= -p , x1 x2=q.,猜一猜,(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a0)的两个根分别是x1、 x2,那么,你可以发现什么结论?,证一证:,一元二次方程的根与系数的关系 (韦达定理),如果 ax2+bx+c=0(a0)的两个根为x1、 x2,那么,满足上述关系的前提条件,b2-4ac0.,归纳总结,例1:利用根与系数的关系,求下列方程的两根之和、两根之积. (1)x2 + 7x + 6 = 0;,解:这里 a = 1 , b = 7 , c = 6. = b2 - 4ac = 72 4 1 6 = 25 0. 方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = -7 , x1 x2 = 6.,(2)2x2 - 3x - 2 = 0.,解:这里 a = 2 , b = -3 , c = -2. = b2 - 4ac = (- 3)2 4 2 (-2) = 25 0, 方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = , x1 x2 = -1 .,例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.,解:设方程的两个根分别是x1、x2,其中x1=2 . 所以:x1 x2=2x2= 即:x2= 由于x1+x2=2+ = 得:k=7. 答:方程的另一个根是 ,k=7.,变式:已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.,解:设方程的两个根分别是x1、x2,其中x1=1. 所以:x1 + x2=1+x2=6, 即:x2=5 . 由于x1x2=15= 得:m=15. 答:方程的另一个根是5,m=15.,例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.,解:根据根与系数的关系可知:,设x1, x2为方程x2-4x+1=0的两个根,则: (1)x1+x2= , (2)x1x2= , (3) , (4) .,4,1,14,12,练一练,例4:设x1,x2是方程 x2 -2(k - 1)x + k2 =0 的两个实数根,且x12 +x22 =4,求k的值.,解:由方程有两个实数根,得= 4(k - 1)2 - 4k2 0 即 -8k + 4 0. 由根与系数的关系得 x1 + x2 = 2(k -1) , x1 x2 =k 2. x12 + x22 = (x1 + x2)2 - 2x1x2 = 4(k -1)2 -2k2 = 2k2 -8k + 4. 由 x12 + x22 = 4,得 2k2 - 8k + 4 = 4, 解得 k1= 0 , k2 = 4 . 经检验, k2 = 4 不合题意,舍去.,总结常见的求值:,求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.,当堂练习,1.如果-1是方程2x2x+m=0的一个根,则另一个根是_,m =_.,2.已知一元二次方程x2+px+q=0的两根分别为-2 和 1 ,则:p = , q= .,1,-2,-3,3.已知方程 3x2 -19x + m=0的一个根是1,求它的另一个根及m的值.,解:将x = 1代入方程中: 3 -19 + m = 0. 解得 m = 16, 设另一个根为x1,则: 1 x1 = x1 =,4.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4; (1)求k的值; (2)求(x1-x2)2的值.,解:(1)根据根与系数的关系 所以(x1+1)(x2+1)=x1x2+(x1+x2)+1= 解得:k=-7;,(2)因为k=-7,所以 则:,5.设x1,x2是方程3x2 + 4x 3 = 0的两个根.利用根系数之间的关系,求下列各式的值. (1) (x1 + 1)(x2 + 1); (2),解:根据根与系数的关系得: (1)(x1 + 1)(x2 + 1) = x1 x2 + x1 + x2 + 1= (2),6. 当k为何值时,方程2x2-kx+1=0的两根差为1.,解:设方程两根分别为x1,x2(x1x2),则x1-x2=1, (x1-x2)2=(x1+x2)2-4x1x2=1,拓展提升,由根与系数的关系,得,7.已知关于x的一元二次方程mx2-2mx+ m -2=0 (1)若方程有实数根,求实数m的取值范围. (2)若方程两根x1,x2满足x1-x2= 1 求m的值.,解:(1)方程有实数根,m的取值范围为m0,(2)方程有实数根x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫浴清洁技巧培训课件
- 物流运输服务合同细节说明
- 市政工程考试前的试题及答案
- 规范管理年实施纲要
- 市政工程周期管理试题及答案
- 古代历史文化常识题
- 经济学基础概念及原理练习题
- 财务分析与工程经济试题及答案
- 如何设计统一版式
- java考试试题及答案
- 清华同方空调控制器说明
- 第三批全国乡村治理典型案例
- 《降低留置尿管病人的护理缺陷发生率》品管圈汇报
- TOEFL阅读100篇附答案
- 方剂学七版教材
- 2023年烟台毓璜顶医院康复医学与技术岗位招聘考试历年高频考点试题含答案解析
- GB/T 11547-2008塑料耐液体化学试剂性能的测定
- 黑龙江省自然科学基金项目申请书联合引导项目JJSBYB
- 英国食物介绍british-food(课堂)课件
- 神经系统疾病的康复课件
- DB32 4181-2021 行政执法案卷制作及评查规范
评论
0/150
提交评论