




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 29 XX 届高考物理第一轮考点复习教案 3 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 曲线运动 知识网络: 单元切块: 按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动问题。 运动的合成与分解平抛物体的运动 教学目标: 1明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动); 2理解和运动、分运动,能够 运用平行四边形定则处理运动的合成与分解问题。 3掌握平抛运动的分解方法及运动规律 4通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力 教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解 2 / 29 教学方法:讲练结合,计算机辅助教学 教学过程: 一、曲线运动 1曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛 运动。 当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动(这里的合力可以是万有引力 卫星的运动、库仑力 电子绕核旋转、洛仑兹力 带电粒子在匀强磁场中的偏转、弹力 绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力 锥摆、静摩擦力 水平转盘上的物体等) 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化 如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动合力的方向并不总跟速度方向垂直 2曲线运动的特点:曲线运动的速度方向一定改变,所以是变速 运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。 二、运动的合成与分解 3 / 29 1从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。 一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。船对地的运动为船对静水的运动与水对地的运动的合运动。一般地 ,物体的实际运动就是合运动。 第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。如两辆车的运动,甲车以v 甲 8m s 的速度向东运动,乙车以 v 乙 8m s 的速度向北运动。求甲车相对于乙车的运动速度 v 甲对乙。 2求一个已知运动的分运动,叫运动的分解,解题时应按实际 “ 效果 ” 分解,或正交分解。 3合运动与分运动的特征: 等时性:合运动所需时间和对应的每个分运动时间相等 独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。 4物体的运动状态 是由初速度状态( v0)和受力情况( F合)决定的,这是处理复杂运动的力和运动的观点 .思路是: ( 1)存在中间牵连参照物问题:如人在自动扶梯上行走,4 / 29 可将人对地运动转化为人对梯和梯对地的两个分运动处理。 ( 2)匀变速曲线运动问题:可根据初速度( v0)和受力情况建立直角坐标系,将复杂运动转化为坐标轴上的简单运动来处理。如平抛运动、带电粒子在匀强电场中的偏转、带电粒子在重力场和电场中的曲线运动等都可以利用这种方法处理。 5运动的性质和轨迹 物体运动的性质由加速度决定(加速度得零时物体静止或做匀速运动;加 速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。 物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。 两个互成角度的直线运动的合运动是直线运动还是曲线运动? 决定于它们的合速度和合加速度方向是否共线(如图所示)。 常见的类型有: a=0 :匀速直线运动或静止。 a 恒定:性质为匀变速运动,分为: v 、 a 同向,匀加速直线运动; v 、 a 反向,匀减速直线运动; v 、 a 成角度,匀变速曲 线运动(轨迹在 v、 a 之间,和速度 v 的方向相切,方向逐渐向 a 的方向接近,但不可能达到。) 5 / 29 a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。 6过河问题 如右图所示,若用 v1表示水速, v2表示船速,则: 过河时间仅由 v2 的垂直于岸的分量 v 决定,即,与 v1无关,所以当 v2 岸时,过河所用时间最短,最短时间为也与 v1无关。 过河路程由实际运动轨迹的方向决定,当 v1 v2 时,最短路程为 d;当 v1 v2时,最短路程程为(如右图所示)。 7连带运动问题 指物拉绳(杆)或绳(杆 )拉物问题。由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。 【例 1】如图所示,汽车甲以速度 v1 拉汽车乙前进,乙的速度为 v2,甲、乙都在水平面上运动,求 v1v2 解析:甲、乙沿绳的速度分别为 v1 和 v2cos ,两者应该相等,所以有 v1v2=cos1 【例 2】两根光滑的杆互相垂直地固定在一起。上面分别穿有一个小球。小球 a、 b 间用一细直棒相连如图。当 细直棒与竖直杆夹角为 时,求两小球实际速度之比 vavb 6 / 29 解析: a、 b 沿杆的分速度分别为 vacos 和 vbsin vavb=tan1 三、平抛运动 当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。其轨迹为抛物线,性质为匀变速运动。平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。 1、平抛运动基本规律 速度:, 合速度 方向: tan= 位移 x=voty= 合位移大小: s=方向: tan= 时间由 y=得 t=(由下落的高度 y 决定) 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。 2应用举例 ( 1)方格问题 【例 3】平抛小球的闪光照片如图。已知方格边长 a 和闪光照相的频闪间隔 T,求: v0、 g、 vc 解析:水平方向:竖直方向: 7 / 29 先求 c点的水平分速度 vx和竖直分速度 vy,再求合速度 vc: ( 2)临界问题 典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少? 【例 4】已知网高 H,半场长 L, 扣球点高 h,扣球点离网水平距离 s、求:水平扣球速度 v 的取值范围。 解析:假设运动员用速度 vmax 扣球时,球刚好不会出界,用速度 vmin扣球时,球刚好不触网,从图中数量关系可得: ; 实际扣球速度应在这两个值之间。 【例 5】如图所示,长斜面 oA 的倾角为 ,放在水平地面上,现从顶点 o 以速度 v0 平抛一小球,不计空气阻力,重力加速度为 g,求小球在飞行过程中离斜面的最大距离 s 是多少? 解析:为计算简便,本题也可不用常规方法来处理,而是将速度和加速度分别沿垂直于斜面和平行于斜面方向进行分解。如图 15,速度 v0 沿垂直斜面方向上的分量为v1=v0sin ,加速度 g 在垂直于斜面方向上的分量为a=gcos ,根据分运动各自独立的原理可知,球离斜面的最8 / 29 大距离仅由和决定,当垂直于斜面的分速度减小为零时,球离斜面的距离才是最大。 点评:运动的合成与分解遵守平行四边形定则,有时另辟蹊径可以收到意想不到的效果。 ( 3)一个有用的推论 平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:设时间 t 内物体的水平位移为 s,竖直位移为 h,则末速度的水平分量 vx=v0=s/t,而竖直分量 vy=2h/t,所以有 【例 6】从倾角为 =30 的斜面顶端以初动能 E=6j向下坡方向平抛出一个小球,则小球落到斜面上时的动能 E/为_j。 解析:以抛出点和落地点连线为对角线画出矩形 ABcD,可以证明末速度 vt 的反向延长线必然交 AB 于其中点 o,由图中可知 ADAo=2 ,由相似形可知 vtv0= ,因此很容易可以得出结论: E/=14j。 点评:本题也能用解析法求解。列出竖直分运动和水平分运动的方程,注意到倾角和下落高度和射程的关系,有: h=gt2,s=v0t, 或 h=vyt, s=v0t, 同样可求得 vtv0= , E/=14j 9 / 29 四、曲线运动的一般研究方法 研究曲线运动的一般方法就是正交分解法。将复杂的曲线运动分解为两个互相垂直方向上的直线运动。一般以初速度或合外力的方向为坐标轴进行分解。 【例 7】如图所示,在竖直平面的 xoy坐标系内, oy表示竖直向上方向。该平面内存在沿 x 轴正向的匀强电场。一个带电小球从坐标原点沿 oy 方向竖直向上抛出,初动能为 4j,不计空气阻力。它达到的最高点位置如图中 m 点所示。求: 小球在 m 点时的动能 E1。 在图上标出小球落回 x 轴时的位置 N。 小球到达 N 点时的动能 E2。 解析: 在竖直方向小球只受重力,从 om 速度由 v0减小到 0;在水平方向小球只受电场力,速度由 0 增大到 v1,由图知这两个分运动平均速度大小之比为 23 ,因此v0v1=23 ,所以小球在 m 点时的动能 E1=9j。 由竖直分运动知, om 和 mN 经历的时间相同,因此水平位移大小之比为 13 ,故 N 点的横坐标为 12。 小球到达 N 点时的竖直分速度为 v0,水平分速度为 2v1,由此可得此时动能 E2=40j。 五、综合例析 【例 8】如图所示,为一平抛物体运动的闪光照片示意图,照 片与实际大小相比缩小 10倍 .对照片中小球位置进行测量10 / 29 得: 1 与 4 闪光点竖直距离为, 4 与 7 闪光点竖直距离为,各闪光点之间水平距离均为则 (1)小球抛出时的速度大小为多少 ? (2)验证小球抛出点是否在闪光点 1 处,若不在,则抛出点距闪光点 1的实际水平距离和竖直距离分别为多少 ?(空气阻力不计, g 10m/s2) 解析: (1)设 14之间时间为 T, 竖直方向有: ()10 -210m gT2 所以 T= 水平方向: 10 -2310m v0T 所以 v0=/s (2)设物体在 1 点的竖直分速度为 v1y 14竖直方向: 10 -210m=v1yT+gT2 解得 v1y=1m/s 因 v1y0 ,所以 1 点不是抛出点 设抛出点为 o 点,距 1 水平位移为 xm,竖直位移为 ym,有 水平方向 x=v0t 竖直方向: 解得 t=, x=15cm y=5cm 11 / 29 即抛出点距 1 点水平位移为 15cm,竖直位移为 5cm 【例 9】柯受良驾驶汽车飞越黄河,汽车从最高点开始到着地为止这一过程的运动可以看作平抛运动。记者从侧面用照相机通过多次曝光,拍摄到汽车在经过最高点以后的三副运动照片如图 2 所示,相邻两次曝光时间间隔相等 ,均为 t ,已知汽车的长度为 l,则 A从左边一幅照片可推算出汽车的水平分速度的大小 B从左边一幅照片可推算出汽车曾经到达的最大高度 c从中间一幅照片可推算出汽车的水平分速度的大小和汽车曾经到达的最大高度 D从右边一幅照片可推算出汽车的水平分速度的大小 解析:首先应动态的看照片,每幅照片中三个汽车的像是同一辆汽车在不同时刻的像,根据题目的描述,应是由高到低依次出现的,而且相邻两像对应的时间间隔是相等的,均为已知的 t 。 题目中 “ 汽车的长度为 l” 这一已知条件至关重要,我们量出汽车在照片中 的长度,就能得到照片与实际场景的比例,这样照片中各点间的真实距离都能算出。 物理知识告诉我们,汽车在通过最高点后的运动,可抽象为质点的平抛运动,因此水平方向为匀速运动,竖直方向为自由落体运动。 12 / 29 关于水平速度,由于汽车在空中相邻的两个像对应的真实距离能算出,这段运动对应的时间 t 已知,因此由左、中两幅照片中的任意一幅都能算出水平速度。至于右边的一幅,因为汽车在空中的像只有一个,而紧接着的在地上的像不一定是刚着地时的像(汽车刚着地时,可能是在两次拍摄之间),因此在这个 t 内,可能有一段时间做的已经不是平抛运 动了,水平方向不是匀速的。所以用该照片无法计算出水平速度。 关于最大高度,应分析竖直方向,同时对不同照片进行比较。左边一幅,没拍到地面,肯定不能计算最大高度。右边一幅,空中只有一个像,无法分析其自由落体运动。中间一幅,相邻像的两个真实距离均能知道,借用处理纸带的方法,能算出中间那个像对应的速度,进而由自由落体运动的公式算出最高点这个位置的高度,再加上这个位置的离地高度即可得到汽车离地的最大高度。因此该题选 A、 c。 点评:这是一道很典型的频闪照片的题,给我们很多分析频闪照片的启示:要能看出动态、要关注照片 比例、要先确定运动的性质,以便在其指引下分析,多幅照片要进行细致的比较。 六、针对练习 1做平抛运动的物体,每秒的速度增量总是 A大小相等,方向相同 13 / 29 B大小不等,方向不同 c大小相等,方向不同 D大小不等,方向相同 2从倾角为 的足够长的斜面上的 A 点,先后将同一小球以不同的初速度水平向右抛出第一次初速度为 v1,球落到斜面上的瞬时速度方向与斜面夹角为 1 ,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为 2 ,若 v1 v2,则 A 1 2B 1=2c 1 2D 无法确定 3小球从空中以某一初速度水平抛出,落地前 1s 时刻,速度方向与水平方向夹 30 角,落地时速度方向与水平方向夹60 角, g 10m/s2,求小球在空中运动时间及抛出的初速度。 4如图所示,飞机离地面高度为 H 500m,水平飞行速度为 v1 100m/s,追击一辆速度为 v2 20m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹? (g=10m/s2) 5飞机以恒定的速度 v 沿水平方向飞行,高度为 2000m。在飞行过程中释放一枚炸弹,经过 30s后飞行员听见炸弹落地的 爆炸声。假设此爆炸向空间各个方向的传播速度都为330m/s,炸弹受到的空气阻力可以忽略,求该飞机的飞行速14 / 29 度 v? 6 如图所示,点光源 S 距墙 mN 的水平距离为 L,现从 o处以水平速度 v0 平抛一小球 P, P 在墙上形成的影是 P,在球做平抛运动过程中,其影 P的运动速度是多大? 7在离地面高为 h,离竖直光滑墙的水平距离为 s1处,有一小球以 v0 的速度向墙水平抛出,如图所示。小球与墙碰撞后落地,不计碰撞过程中的能量损失,也不考虑碰撞的时间,则落地点到墙的距离 s2为多少? 8如图所示,光滑斜面长为 a,宽为 b,倾角为 。一物块沿斜面上方顶点 P水平射入,而从右下方顶点 Q离开斜面,求物块入射的初速度为多少? 参考答案: 1 A 2 B 3解析:设小球的初速度为 v0,落地前 1s 时刻其竖直分速度为 v1,由图 1 知: v1 v0tan300,落地时其竖直分速度为 v2,同理 v2 v0tan600, v2-v1=gt ,所以 t=。 点评:在解这类基本题型时,需要注意的是:速度、加速度、位移都是矢量,运算时遵守平行四边形定则。 4解析:炸弹作平抛运动,其下落的时间取决于竖直高度,15 / 29 由得: s,设距汽车水平距离为 s 处飞机投弹,则有: m。 点评:物体作平抛运动飞行的时间只与抛出点和落地点的高度差有关,与物体的质量及初速度无关。先确定运动所需时间有助于问题的解决。 5解析:设释放炸弹后,炸弹经 t1时间落地爆炸,则由平抛运动公式得:,设从炸弹爆炸到飞行员听见爆炸声所经过的时间为 t2,则由题给条件得 t=t1+t2,由图直角三角形的几何关系可得,解得 v=262m/s。 点评:根据题中描述的物理情景,画出相应的示意图,充分利用几何关系是处理平抛运动相关问题通常采用的方法。 6解析:设小球经过 一段时间运动到某一位置时的水平位移为 x,竖直位移为 y,对应的影的长度为 h,由图知:,而x=v0t, y=gt2;所以,由此看出影子的运动是匀速直线运动,其速度为。 点评:本题将平抛运动与光学有机结合起来,在思考时注意 抓住影子是由于光的直线传播形成的。 7解析:如图所示,小球撞墙的速度 v 斜向下,其水平分量为 v0,由于碰撞无能量损失,故碰撞后小球的速度大小不变, v与 v关于墙面对称,故 v的水平分量仍为v0, s2 故等于小球没有撞墙时的水平位移 s2,所以s2 s s1, s 为平 抛运动的整个位移,由 s=v0t,有;。 16 / 29 点评:由于碰撞无能量损失,故反弹速度与原速度关于墙面对称,可用平抛运动全程求解是本题的一个亮点。 8解析:物体在光滑斜面上只受重力和斜面对物体的支持力,因此物体所受到的合力大小为 F,方向沿斜面向下;根据牛顿第二定律,则物体沿斜面方向的加速度应为 a加,又由于物体的初速度与 a 加垂直,所以物体的运动可分解为两个方向的运动,即水平方向是速度为 v0的匀速直线运动,沿斜面向下的是初速度为零的匀加速直线运动。因此在水平方向上有 a=v0t,沿斜面向下的方向上有 b a 加 t2; 故。 点评:初速度不为零,加速度恒定且垂直于初速度方向的运动,我们称之为类平抛运动。在解决类平抛运动时,方法完全等同于平抛运动的解法,即将类平抛运动分解为两个相互垂直、且相互独立的分运动,然后按运动的合成与分解的方法去解,本题的创新之处在于解题思维方法的创新,即平抛运动的解题方法推广到类平抛运动中去。 教学随感 掌握平抛运动的分解方法及运动规律,通过例题的分析,探究解决有关平抛运动实际,问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力 圆周运动 教学目标: 1掌握描述 圆周运动的物理量及相关计算公式; 17 / 29 2学会应用牛顿第二定律解决圆周运动问题 3掌握分析、解决圆周运动动力学问题的基本方法和基本技能 教学重点:匀速圆周运动 教学难点:应用牛顿第二定律解决圆周运动的动力学问题 教学方法:讲练结合,计算机辅助教学 教学过程: 一、描述圆周运动物理量: 1、线速度 ( 1)大小: v=(s是 t 时间内通过的弧长 ) ( 2)方向:沿圆周的切线方向,时刻变化 ( 3)物理意义:描述质点沿圆周运动的快慢 2、角速度: ( 1)大小: =(是 t 时间内半径转过 的圆心角 ) ( 2)方向:沿圆周的切线方向,时刻变化 ( 3)物理意义:描述质点绕圆心转动的快慢 3、周期 T、频率 f: 作圆周运动的物体运动一周所用的时间 ,叫周期;单位时间内沿圆周绕圆心转过的圈数,叫频率。即周期的倒数。 4、的关系 v=r=2rf 点评:、,若一个量确定,其余两个量也就确定了,而 v 还18 / 29 和 r 有关。 5、向心加速度 a: ( 1)大小: a=2f2r ( 2)方向:总指向圆心,时刻变化 ( 3)物理意义:描述线速度方向改变的快慢。 【例 1】如图所示装置中,三个 轮的半径分别为 r、 2r、 4r,b 点到圆心的距离为 r,求图中 a、 b、 c、 d 各点的线速度之比、角速度之比、加速度之比。 解析: va=vc ,而 vbvcvd=124 ,所以vavbvcvd=2124 ; ab=21 ,而b=c=d ,所以 abcd=2111 ;再利用 a=v ,可得 aaabacad=4124 点评:凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相 等(轴上的点除外)。 【例 2】如图所示,一种向自行车车灯供电的小发电机的上端有一半径 r0=的摩擦小轮,小轮与自行车车轮的边缘接触。当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。自行车车轮的半径 R1=35cm,小齿轮的半径 R2=,大齿轮的半径 R3=。求大齿轮的转速 n1 和摩擦小轮的转速 n2之比。(假定摩擦小轮与自行车轮之间无相对滑动) 19 / 29 解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由 v=2nr 可知转速n 和半径 r 成反比;小齿轮和车轮同轴转动,两轮上各点的转 速相同。由这三次传动可以找出大齿轮和摩擦小轮间的转速之比 n1n2=2175 二、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题) 1向心力 ( 1)大小: ( 2)方向:总指向圆心,时刻变化 点评: “ 向心力 ” 是一种效果力。任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以作为向心力。 “ 向心力 ” 不一定是物体所受合外力。做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力 ,合外力的另一个分力沿着圆周的切线,使速度大小改变。 2处理方法: 一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度20 / 29 的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。 做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律: Fn=man 在列方程时,根据物体的受力分析,在方程左边写出外界给物体 提供的合外力,右边写出物体需要的向心力(可选用等各种形式)。 如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。如卫星沿椭圆轨道运行时,在远地点和近地点的情况。 3处理圆周运动动力学问题的一般步骤: ( 1)确定研究对象,进行受力分析; ( 2)建立坐标系,通常选取质点所在位置为坐标原点,其中一条轴与半径重合; ( 3)用牛顿第二定律和平衡条件建立方程求解。 4几个特例 ( 1)圆锥摆 圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。 【例 3】小球在半径为 R 的光滑半球内做水平面内的匀速圆21 / 29 周运动,试分析图中的 (小球与半球球心连线跟竖直方向的夹角)与线速度 v、周期 T 的关系。(小球的半径远小于 R。) 解析:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力 F 是重力 G 和支持力 N 的合力,所以重力和支持力的合力方向必然水平。如图所示 有: , 由此可得:, (式中 h 为小球轨道平面到球心的高度)。 可见, 越大(即轨迹所在平面越高), v 越大, T 越小。 点评:本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 ( 2)竖直面内圆周运动最高点处的受力特点及分类 这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力 必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。 弹力只可能向下,如绳拉球。这种情况下有 即,否则不能通过最高点。 22 / 29 弹力只可能向上,如车过桥。在这种情况下有:,否则车将离开桥面,做平抛运动。 弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小 v 可以取任意值。但可以进一步讨论: 当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。 当弹力大小 Fmg 时,向心力只有一解: F+mg;当弹力 F=mg 时,向心力等于零。 【例 4】如图所示,杆长为 L,球的质量为 m,杆连球在竖直平面内绕轴 o 自由转动,已知在最高点处,杆对球的弹力大小为 F=mg,求这时小球的瞬时速度大小。 解析:小球所需向心力向下,本题中 F=mg mg,所以弹力的方向可能向上也可能向下。 若 F 向上,则 若F 向下,则 点评:本题是杆连球绕轴自由转动,根据机械能守恒,还能求出小球在最低点的即时速度。 需要注意的是:若题目中说明小球 在杆的带动下在竖直面内做匀速圆周运动,则运动过程中小球的机械能不再守恒,这两类题务必分清。 【例 5】如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高 h23 / 29 的 A 处静止开始下滑,沿轨道 ABc运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的 3 4,圆滑半径为R,斜面倾角为 , sBc=2R。若使小球在圆环内能作完整的圆周运动, h 至少为多少? 解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力 F,如图所示。可知 F,方向与竖直方向左偏下37º,从图 6 中可知,能否作完整的圆周运动的临界点是能否通过 D 点,若恰好能通过 D 点,即达到 D 点时球与环的弹力恰好为零。 由圆周运动知识得: 即: 由动能定理有: 联立 、 可求出此时的高度 h。 三、综合应用例析 【例 6】如图所示,用细绳一端系着的质量为 m=的物体 A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔 o 吊着质量为 m=的小球 B, A 的重心到 o 点的距离为若 A 与转盘间的最大静摩擦力为 f=2N,为使小球 B 保持静止,求转盘绕中心 o 旋转的角速度 的取值范围(取 g=10m/s2) 解析:要使 B 静止, A 必须相对于转盘静止 具有与转盘24 / 29 相同的角速度 A 需要的向心力由绳拉力和静摩擦力合成角速度取最大值时, A 有离心趋势,静摩擦力指向圆心 o;角速度取最小值时, A 有向心运动的趋势,静摩擦力背离圆心o 对于 B, T=mg 对于 A, rad/srad/s 所以 /srad/s 【例 7】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为 R(比细管的半径大得多)在圆管中有两个直径与细管内径相同的小球(可视为质点) A 球的质量为 m1, B 球的质量为 m2它们沿环形圆管顺时针运动,经过最低点时的速度都为 v0设 A 球运动到最低点时, B 球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么 m1、 m2、 R 与 v0应满足的关系式是 _ 解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题 A 球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下若要此时两球作用于圆管的合力为零, B 球对圆管的压力一定是竖直向上的,所以圆管对 B 球的压力一定是竖直向下的 25 / 29 由机械能守恒定律, B 球通过圆管最高点时的速度 v 满足方程 根据牛顿运动定律 对于 A 球, 对于 B 球, 又 N1=N2 解得 【例 8】如图所示,位于竖直平面上的 1/4圆弧光滑轨道,半径为 R, oB 沿竖直方向,上端 A 距地面高度为 H,质量为m 的小球从 A 点由静止释放,最后落在水平地面上 c 点处,不计空气阻力,求: (1)小球运动到轨道上的 B 点时,对轨道的压力多大 ? (2)小球落地点 c 与 B 点水平距离 s 是多少 ? 解析: (1)小球由 AB 过程中,根据机械能守恒定律有: mgR 小球在 B 点时,根据向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东佛山市第二人民医院服务中心招聘11人考前自测高频考点模拟试题及一套参考答案详解
- 2025年河北承德辰飞供电服务有限公司招聘101人考前自测高频考点模拟试题及答案详解(新)
- 身边的环保故事写物作文9篇范文
- 2025春季河南新乡工商职业学院招聘模拟试卷有答案详解
- 2025湖南邵阳市洞口县黄桥镇中心卫生院面向社会公开招聘编外合同制影像(医师)技师考前自测高频考点模拟试题及完整答案详解一套
- 2025广东社会科学大学招聘事业编制工作人员2人考前自测高频考点模拟试题及参考答案详解一套
- 山西省大同市联考2024-2025学年高二上学期10月月考地理试题(解析版)
- 辽宁省辽南协作体2024-2025学年高三上学期10月月考地理试题(解析版)
- 江西省上饶市蓝天教育集团2024-2025学年高一上学期第一次月考地理试卷(解析版)
- 2025甘肃省兰州市榆中县中医医院春季招聘15人模拟试卷(含答案详解)
- 2025至2030中国HVAC电机行业产业运行态势及投资规划深度研究报告
- 《智能制造技术与工程应用》全套教学课件
- 2025年全国保密教育线上培训考试试题库附答案【考试直接用】含答案详解
- 2025年度全国普通话水平测试20套复习题库及答案
- 2025年初级会计师考试真题试题及答案
- 上海嘉定区区属国有企业招聘考试真题2024
- 2025心肺复苏术课件
- 高性能材料有限公司年产4.5万吨电子级异丙醇扩建项目环评资料环境影响
- T-CECS 10400-2024 固废基胶凝材料
- 2025年内蒙古三新铁路有限责任公司招聘笔试参考题库含答案解析
- 第十四章其他原因引起的语言障碍讲解
评论
0/150
提交评论