超越Hadoop的大数据技术:用Spark 和Shark进行基于内存的实时大数据分析_第1页
超越Hadoop的大数据技术:用Spark 和Shark进行基于内存的实时大数据分析_第2页
超越Hadoop的大数据技术:用Spark 和Shark进行基于内存的实时大数据分析_第3页
超越Hadoop的大数据技术:用Spark 和Shark进行基于内存的实时大数据分析_第4页
超越Hadoop的大数据技术:用Spark 和Shark进行基于内存的实时大数据分析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Big Data Beyond Hadoop Real-Time Analytical Processing (RTAP) Using Spark and Shark Jason Dai Engineering Director MSIE 5.5; Windows 98; Win 9x 4.90)“ Compute page view in the last minute E.g., , etc. Compute category view count in the last minute E.g., join logs and the video table (assuming video 8745 belongs to /vehicle/car/sports) for /vehicle, /vehicle/car, /vehicle/car/sports, etc. Real-Time Data Store and Query Engine Spark Streamin g In-Memory Shark Table Shark Tables (HDFS) Stream Processing Query Engine Persistent Storage Shark RAM Store Aggregation results written to Shark table cached in memory Currently output as cached RDD by Spark Streaming Require Spark Streaming embedded in the Shark server JVM Plan to move to Tachyon for better sharing and fault tolerance Both real-time aggregations and history data queried through Shark History data loaded into memory for iterative mining Working on query optimizations standard SQl-92 support Interactive Query / BI Online Analysis / Dashboar d Online and Interactive Queries In-Memory Shark Table Shark Tables (HDFS) Query Engine Persistent Storage Shark RAM Store Interactive Query / BI Online Analysis / Dashboar d Online analysis A lightweight UI frontending Shark for online dashboard Mostly time-based lightweight queries (filtering, ordering, TopN, aggregations, etc.) with sub-second latency Interactive query / BI Ad-hoc, (more) complex SQL queries (with 5 seconds latency) Heavily denormalized to eliminate join as much as possible Summary Real-Time Analytical Processing Graph-Parallel MLDM Distributed In-Memory Analysis Big Data beyond Hadoop BDAS: one stack to rule them all! Intel China collaborating with UC Berkeley web sites on production deployment Active communities and early adopters evolving (e.g., Spark Apache incubator proposal ) Work with us on next-gen Big Data beyond Hadoop using Spark/Shark 1 2 Call to action 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论