已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2双曲线的简单几何性质(一),2.2.2双曲线的简单几何性质(一),| |MF1|-|MF2| | =2a( 2a|F1F2|),F ( c, 0) F(0, c),2、对称性,一、研究双曲线 的简单几何性质,1、范围,关于x轴、y轴和原点都是对称。,x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y),课堂新授,3、顶点,(1)双曲线与对称轴的交点,叫做双曲线的顶点,根据以上几何性质能够较准确地画出椭圆的图形,问: 根据以上几何性质能否较准确地画出双曲线的图形呢?,问: 双曲线向远处伸展时有什么规律?,M(x,y),4、渐近线,N(x,y),慢慢靠近,动画演示,5、离心率,离心率。,ca0,e 1,e是表示双曲线开口大小的一个量,e越大开口越大,(1)定义:,(2)e的范围:,(3)e的含义:,(4)等轴双曲线的离心率e= ?,( 5 ),(1)范围:,(4)渐近线:,(5)离心率:,小 结,或,或,关于坐标 轴和 原点 都对 称,例1 :求双曲线,的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。,解:把方程化为标准方程,可得:实半轴长a=4,虚半轴长b=3,半焦距c=,焦点坐标是(0,-5),(0,5),离心率:,渐近线方程:,例题讲解,例2,1、若双曲线的渐近线方程为 则双曲线的离心率为 。 2、若双曲线的离心率为2,则两条渐近线的交角为 。,课堂练习,例3 :求下列双曲线的标准方程:,例题讲解,法二:巧设方程,运用待定系数法. 设双曲线方程为 ,法二:设双曲线方程为, 双曲线方程为, ,解之得k=4,1、“共渐近线”的双曲线的应用,0表示焦点在x轴上的双曲线; 0表示焦点在y轴上的双曲线。,双曲线的渐近线方程为,解出,椭圆与双曲线的比较,小 结,|x|a,|y|b,|x| a,yR,对称轴:x轴,y轴 对称中心:原点,对称轴:x轴,y轴 对称中心:原点,(-a,0) (a,0) (0,b) (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钟表及计时仪器制造工岗前价值创造考核试卷含答案
- 服装定型工创新思维测试考核试卷含答案
- 蜂媒授粉员操作评估能力考核试卷含答案
- 提硝工安全理论评优考核试卷含答案
- 公司游泳池救生员标准化技术规程
- 合成氨二氧化碳回收工岗前沟通技巧考核试卷含答案
- 玻璃退火工岗前工作质量考核试卷含答案
- 公司报刊业务员工艺技术规程
- 电力电容器及其装置制造工岗位设备技术规程
- 影视娱乐行业内容变现与盈利模式探讨
- 区危化品运输车辆停车场专项应急预案
- 年度考核评分表实用文档
- dd5e人物卡可填充格式角色卡夜版
- 食品安全“周排查”记录表
- 大学英语学术阅读知到章节答案智慧树2023年南京大学
- EBZ掘进机电气原理图三一重工
- 汉字英雄试题库
- 两篇古典英文版成语故事狐假虎威
- GB/T 6109.11-1990漆包圆绕组线第11部分:200级聚酯亚胺/聚酰胺酰亚胺复合漆包铜圆线
- GB/T 29475-2012移动实验室设计原则及基本要求
- 职业性格测验量表
评论
0/150
提交评论