




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.4直接证明与间接证明,知识梳理,双基自测,2,1,1.直接证明,成立,充分,知识梳理,双基自测,2,1,知识梳理,双基自测,2,1,2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题(即在原命题的条件下,结论不成立),经过正确的推理,最后得出,因此说明假设错误,从而证明的证明方法.(2)用反证法证明的一般步骤:反设假设命题的结论不成立;归谬根据假设进行推理,直到推出矛盾为止;结论断言假设不成立,从而肯定原命题的结论成立.,不成立,矛盾,原命题成立,2,知识梳理,双基自测,3,4,1,5,1.下列结论正确的打“”,错误的打“”.(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)用反证法证明时,推出的矛盾不能与假设矛盾.()(5)常常用分析法寻找解题的思路与方法,用综合法展现解决问题的过程.(),答案,知识梳理,双基自测,2,3,4,1,5,2.命题“对于任意角,cos4-sin4=cos2”的证明:“cos4-sin4=(cos2-sin2)(cos2+sin2)=cos2-sin2=cos2”过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法,答案,解析,知识梳理,双基自测,2,3,4,1,5,3.已知a=lg2+lg5,b=ex(xbB.a0,求证:2a3-b32ab2-a2b.,证明(1)因为m0,所以1+m0.所以要证原不等式成立,只需证(a+mb)2(1+m)(a2+mb2),即证m(a2-2ab+b2)0,即证(a-b)20,而(a-b)20显然成立,故原不等式得证.,考点1,考点2,考点3,(2)要证明2a3-b32ab2-a2b成立,只需证2a3-b3-2ab2+a2b0,即2a(a2-b2)+b(a2-b2)0,即(a+b)(a-b)(2a+b)0.ab0,a-b0,a+b0,2a+b0,从而(a+b)(a-b)(2a+b)0成立,2a3-b32ab2-a2b.,考点1,考点2,考点3,例5设数列an是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列Sn不是等比数列.(2)数列Sn是等差数列吗?为什么?思考反证法的适用范围及证题的关键是什么?,(1)证明假设数列Sn是等比数列,因为a10,所以(1+q)2=1+q+q2,即q=0,这与公比q0矛盾,所以数列Sn不是等比数列.,考点1,考点2,考点3,(2)解当q=1时,Sn=na1,故Sn是等差数列;当q1时,Sn不是等差数列.假设Sn是等差数列,则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q0矛盾.综上,当q=1时,数列Sn是等差数列;当q1时,Sn不是等差数列.,解题心得反证法的适用范围及证题的关键(1)适用范围:当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.(2)证题的关键:在正确地推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.推导出的矛盾必须是明显的.,考点1,考点2,考点3,证明:(1)a+b2;(2)a2+a2与b2+b2不可能同时成立.,(2)假设a2+a0,得0a1;同理可得,0b1,从而ab1,这与ab=1矛盾.故a2+a2与b2+b2不可能同时成立.,考点1,考点2,考点3,1.分析法是从结论出发,逆向思维,寻找使结论成立的充分条件.应用分析法要严格按分析法的语言表达,下一步是上一步的充分条件.2.证明问题的常用思路:在解题时,常常把分析法和综合法结合起来运用,先以分析法寻求解题思路,再用综合法表述解答或证明过程.3.用反证法证明问题要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,且推导出的矛盾必须是明显的.,考点1,考点2,考点3,1.应用分析法要书写规范,常用“要证”“只需证”等分析到一个明显成立的结论.2.应用反证法要将假设作为条件进行推理,不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南通巿启东中学2026届化学高一上期中教学质量检测模拟试题含解析
- 目标导向审计技术
- 医院科室功能与服务体系
- 水产技术精短分享
- 三级公立医院绩效改革专题报告
- 细胞灌注护理技术规范与应用进展
- 配售债券规则核心解读
- 成人经口气管插管口腔护理
- 先进先出法的讲解
- 血细胞散点图解析与应用
- 园区改造运营方案(3篇)
- 2025年大学辅导员考试题库真题及答案
- 腮红画法教学课件
- 二零二五版便利店员工劳动合同模板
- 弱电设备运输方案模板(3篇)
- 2025-2030中国重水市场运行态势与未来竞争力剖析报告
- 企业职工感恩教育
- GB 17051-2025二次供水设施卫生规范
- 品牌管理部组织架构及岗位职责
- 临沧市市级机关遴选真题2024
- 【物化生 高考西北卷】2025年高考招生考试真题物理+化学+生物试卷(适用陕西、山西、青海、宁夏四省)
评论
0/150
提交评论