




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.3二项式定理,知识梳理,双击自测,1.二项式定理,2.二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减小1直到零;字母b按升幂排列,从第一项起,次数由零逐项增加1直到n.,知识梳理,双击自测,知识梳理,双击自测,1.(1+x)2n(nN*)的展开式中,系数最大的项是()A.第+1项B.第n项C.第n+1项D.第n项与第n+1项,答案,解析,知识梳理,双击自测,2.(教材改编)二项式(x+1)n(nN*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4,答案,解析,知识梳理,双击自测,3.若(1+x)(1-2x)7=a0+a1x+a2x2+a8x8,则a1+a2+a7的值是()A.-2B.-3C.125D.-131,答案,解析,知识梳理,双击自测,答案,解析,知识梳理,双击自测,答案,解析,知识梳理,双击自测,(2)二项式系数的最值和增减性与指数n的奇偶性有关.当n为偶数时,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.,知识梳理,双击自测,3.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax+b)n,(ax2+bx+c)m(a,bR)的式子,求其展开式的各项系数之和,常用赋值法,只需令x=1即可;对形如(ax+by)n(a,bR)的式子,求其展开式各项系数之和,只需令x=y=1即可.,考点一,考点二,考点三,求二项展开式的指定项或指定项的系数(考点难度),A.80B.48C.-40D.-80,答案,解析,考点一,考点二,考点三,(2)(2017山东高考)已知(1+3x)n的展开式中含有x2项的系数是54,则n=.,答案,解析,考点一,考点二,考点三,方法总结求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项即可.,考点一,考点二,考点三,对点训练(1)(2017浙江温州期末)二项式的展开式中常数项为()A.-15B.15C.-20D.20,答案,解析,考点一,考点二,考点三,A.9B.8C.7D.6,答案,解析,考点一,考点二,考点三,二项式系数的和或各项系数的和的问题(考点难度),系数之和为N,若M-N=240,则n=.,答案,解析,考点一,考点二,考点三,(2)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29,答案,解析,考点一,考点二,考点三,(3)已知(1-2x)7=a0+a1x+a2x2+a7x7,则a0=;(a0+a2+a4+a6)2-(a1+a3+a5+a7)2=.,答案,解析,考点一,考点二,考点三,方法总结1.二项式定理给出的是一个恒等式,对于a,b的一切值都成立.因此,可将a,b设定为一些特殊的值.在使用赋值法时,令a,b等于多少时,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.,考点一,考点二,考点三,对点训练(1)若二项式的展开式中各项的系数和为32,则该展开式中含x项的系数为()A.1B.5C.10D.20,答案,解析,考点一,考点二,考点三,开式中含x2项的系数是.,答案,解析,考点一,考点二,考点三,二项式定理的应用(考点难度)考情分析求多项式展开式中的特定项是近几年高考的热点和难点,一般可以分成三种情况:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题.,考点一,考点二,考点三,类型一几个多项式和的展开式中的特定项(系数)问题【例3】(2017浙江湖州高三考试)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.121B.-74C.74D.-121,答案,解析,考点一,考点二,考点三,类型二几个多项式积的展开式中的特定项(系数)问题,答案,解析,考点一,考点二,考点三,类型三三项展开式中特定项(系数)问题【例5】(2017浙江高考冲刺卷)展开式中的常数项为()A.-8B.-12C.-20D.20,答案,解析,考点一,考点二,考点三,方法总结1.几个多项式和的展开式中特定项只需要先分别求出每一个多项式中的特定项,再合并即可.2.几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.3.三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形.,考点一,考点二,考点三,对点训练(1)若x10-x5=a0+a1(x-1)+a2(x-1)2+a10(x-1)10,则a5=.,答案,解析,考点一,考点二,考点三,(2)(x2+1)的展开式的常数项是()A.5B.-10C.-32D.-42,答案,解析,考点一,考点二,考点三,(3)在(x2-x+1)10的展开式中,x3项的系数为()A.-210B.210C.30D.-30,答案,解析,易错警示混淆二项展开式的系数与二项式系数致误二项式系数和项的系数不是同一个概念,两者容易混淆,注意审题区分题目意思.,(1)二项式系数最大的项;(2)系数的绝对值最大的项.,解:由题意知,22n-2n=992,即(2n-32)(2n+31)=0,故2n=32,解得n=5.,(2)设第k+1项的系数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州省临床检验中心第十三届贵州人才博览会引才2人模拟试卷及1套完整答案详解
- 2025年枣庄市口腔医院公开招聘备案制工作人员(6人)模拟试卷及答案详解(考点梳理)
- 2025内蒙古第七批高层次人才需求目录(2025年4月29日发布)考前自测高频考点模拟试题及1套完整答案详解
- 公司与个人借款合同范本【标准】5篇
- 2025年上半年山东铁投集团校园招聘、社会公开招聘165人考前自测高频考点模拟试题参考答案详解
- 2025北京市大兴区瀛海第六幼儿园招聘模拟试卷(含答案详解)
- 2025广西石卡镇储备村(社区)“两委”后备人才152人考前自测高频考点模拟试题参考答案详解
- 2025年河北石家庄海关技术中心公开招聘劳务派遣类工作人员2名考前自测高频考点模拟试题完整答案详解
- 2025年贵溪市公安局第一批招聘警务辅助人员20人模拟试卷附答案详解(典型题)
- 2025南平国网顺昌县供电公司车辆驾驶服务项目驾驶员招聘考前自测高频考点模拟试题及一套答案详解
- 火锅店引流截流回流方案
- 2025-2026学年七年级英语上学期第一次月考 (福建专用) 2025-2026学年七年级英语上学期第一次月考 (福建专用)原卷
- 国自然培训课件
- 2025安徽普通专升本《大学语文》统考试题及答案
- 2025年4月自考03450公共部门人力资源管理试题
- 2025-2030汽车贷款行业市场深度分析及发展策略研究报告
- 投标代理人委托书
- 2025届高三英语一轮复习人教版(2019)必修第二册单词默写纸
- 辽宁省沈阳市第一二六中学教育集团2024-2025学年八年级上学期10月月考地理试题
- 2025届威海市重点中学高三下学期一模考试物理试题含解析
- 河北省定州市多校2024-2025学年七年级上学期第一次月考地理试题
评论
0/150
提交评论