2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法课件 北师大版选修1 -1.ppt_第1页
2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法课件 北师大版选修1 -1.ppt_第2页
2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法课件 北师大版选修1 -1.ppt_第3页
2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法课件 北师大版选修1 -1.ppt_第4页
2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法课件 北师大版选修1 -1.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题突破三离心率的求法,第二章圆锥曲线与方程,一、以渐近线为指向求离心率例1已知双曲线两渐近线的夹角为60,则双曲线的离心率为_.,思维切入双曲线的两渐近线有两种情况,焦点位置也有两种情况,分别讨论即可.,解析由题意知,双曲线的渐近线存在两种情况.当双曲线的焦点在x轴上时,若其中一条渐近线的倾斜角为60,如图1所示;若其中一条渐近线的倾斜角为30,如图2所示.,点评双曲线的离心率与渐近线方程之间有着密切的联系,可以借助进行互求.一般地,如果已知双曲线离心率的值求渐近线方程,或者已知渐近线方程,求离心率的值,都会有两解(焦点在x轴上和焦点在y轴上两种情况),不能忘记分类讨论.,跟踪训练1中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为,解析由题意知,过点(4,2)的渐近线的方程为,二、以焦点三角形为指向求离心率例2如图,F1和F2分别是双曲线(a0,b0)的两个焦点,A和B是以O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且F2AB是等边三角形,则双曲线的离心率为_.,思维切入连接AF1,在F1AF2中利用双曲线的定义可求解.,解析方法一如图,连接AF1,由F2AB是等边三角形,知AF2F130.易知AF1F2为直角三角形,,方法二如图,连接AF1,易得F1AF290,F1F2A30,F2F1A60,于是离心率,点评涉及到焦点三角形的题目往往利用圆锥曲线的定义求得的值.,解析方法一如图,DF1F2为正三角形,N为DF2的中点,F1NF2N,|NF2|OF2|c,,由椭圆的定义可知|NF1|NF2|2a,,方法二注意到焦点三角形NF1F2中,NF1F230,NF2F160,F1NF290,则由离心率的三角形式,,三、寻求齐次方程求离心率,思维切入通过2|AB|3|BC|,得到a,b,c的关系式,再由b2c2a2,得到a和c的关系式,同时除以a2,即可得到关于e的一元二次方程,求得e.,2,又2|AB|3|BC|,,即2b23ac,2(c2a2)3ac,两边同除以a2并整理得2e23e20,解得e2(负值舍去).,点评求圆锥曲线的离心率,就是求a和c的值或a和c的关系,然后根据离心率的定义求得.但在多数情况下,由于受到题目已知条件的限制,很难或不可能求出a和c的值,只能将条件整理成关于a和c的关系式,进而求得的值,其关键是善于利用定义以及图形中的几何关系来建立关于参数a,b,c的关系式,结合c2a2b2,化简为参数a,c的关系式进行求解.,由ABBF得|AB|2|BF|2|AF|2,将b2a2c2代入,得a2acc20,,故离心率e的取值范围是2,).,四、利用直线与圆锥曲线的位置关系求离心率的取值范围,2,),(1a2)x22a2x2a20.由于直线与双曲线相交于两个不同的点,则1a20a21,且此时4a2(2a2)0a22,所以a2(0,1)(1,2).,五、利用焦半径的性质求离心率的取值范围,解析在PF1F2中,由正弦定理知,又因为点P在椭圆上,所以|PF1|PF2|2a.,又ac0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|4|PF2|,则此双曲线的离心率e的最大值为,解析P在双曲线的右支上,由双曲线的定义可得|PF1|PF2|2a,|PF1|4|PF2|,4|PF2|PF2|2a,,根据点P在双曲线的右支上,,1,2,3,4,5,针对训练,ZHENDUIXUNLIAN,6,7,1,2,3,4,5,6,7,解析过F1的直线MF1是圆F2的切线,F1MF290,|MF2|c,|F1F2|2c,,3.如图,已知F1,F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为,1,2,3,4,5,6,7,4.已知F1,F2是双曲线(a0,b0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若ABF2为钝角三角形,则该双曲线的离心率e的取值范围为,1,2,3,4,5,6,7,1,2,3,4,5,6,7,解析由题设条件可知ABF2为等腰三角形,且AF2BF2,只要AF2B为钝角即可.,故选B.,解析由双曲线的对称性,,1,2,3,4,5,6,7,1,2,3,4,5,6,7,解析因为|MF2|7|MF1|,所以|MF2|MF1|6|MF1|,即2a6|MF1|6(ca),故8a6c,,当且仅当M为双曲线的左顶点时,等号成立.,1,2,3,4,5,6,7,解析如图,连接PF1,OQ,由OQ为PF1F2的中位线,,由圆x2y2b2,可得|OQ|b,则|PF1|2b.由椭圆的定义可得|P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论