




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲函数的奇偶性与周期性,最新考纲1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性,1函数的奇偶性,f(x)f(x),y轴,f(x)f(x),原点,知识梳理,2奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性,偶函数在关于原点对称的区间上的单调性(填“相同”、“相反”)(2)在公共定义域内两个奇函数的和函数是,两个奇函数的积函数是两个偶函数的和函数、积函数是一个奇函数,一个偶函数的积函数是(3)若函数f(x)是奇函数且在x0处有定义,则f(0)0.,相同,相反,奇函数,偶函数,偶函数,奇函数,3周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT),那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中的正数,那么这个最小正数就叫做f(x)的最小正周期,f(x),存在一个最小,诊断自测1思考辨析(在括号内打“”或“”)(1)函数yx2,x(0,)是偶函数()(2)偶函数图象不一定过原点,奇函数的图象一定过原点()(3)若函数yf(xa)是偶函数,则函数yf(x)关于直线xa对称()(4)函数f(x)在定义域上满足f(xa)f(x),则f(x)是周期为2a(a0)的周期函数(),3(2014新课标全国卷)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()Af(x)g(x)是偶函数B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数D|f(x)g(x)|是奇函数,解析依题意得对任意xR,都有f(x)f(x),g(x)g(x),因此,f(x)g(x)f(x)g(x)f(x)g(x),f(x)g(x)是奇函数,A错;|f(x)|g(x)|f(x)|g(x)|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(x)|g(x)|f(x)|g(x)|f(x)|g(x)|,f(x)|g(x)|是奇函数,C正确;|f(x)g(x)|f(x)g(x)|f(x)g(x)|,|f(x)g(x)|是偶函数,D错答案C,4已知f(x)在R上是奇函数,且满足f(x4)f(x),当x(0,2)时,f(x)2x2,则f(2015)等于()A2B2C98D98解析f(x4)f(x),f(x)是以4为周期的周期函数,f(2015)f(50343)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2015)2.答案A,5(人教A必修1P39A6改编)已知函数f(x)是定义在R上的奇函数,当x0时,f(x)x(1x),则x0时,f(x)_.解析当x0时,则x0,f(x)(x)(1x)又f(x)为奇函数,f(x)f(x)(x)(1x),f(x)x(1x)答案x(1x),规律方法判断函数的奇偶性,包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)f(x)0(奇函数)或f(x)f(x)0(偶函数)是否成立,规律方法函数的周期性反映了函数在整个定义域上的性质对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值,(2)因为f(x)的图象关于直线x2对称,所以f(x)f(4x),f(x)f(4x),又f(x)f(x),所以f(x)f(4x),则f(1)f(41)f(3)3.答案(1)D(2)3,规律方法比较不同区间内的自变量对应的函数值的大小对于偶函数,如果两个自变量的取值在关于原点对称的两个不同的单调区间上,即正负不统一,应利用图象的对称性将两个值化归到同一个单调区间,然后再根据单调性判断,易错防范1在用函数奇偶性的定义进行判断时,要注意自变量在定义域内的任意性不能因为个别值满足f(x)f(x),就确定函数的奇偶性2分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拟纳米材料富集技术-洞察及研究
- 贵州省初三二模数学试卷
- 高考测试题数学试卷
- 火箭班招生初三数学试卷
- 河北唐山市小考数学试卷
- 辽宁省公务员考试试题及答案
- 促愈合药物机制研究-洞察及研究
- 三体振荡实验验证-洞察及研究
- 河南中考19数学试卷
- 蓝调江南测试题及答案
- 水利工程设计概估算编制规定工程部分
- 浙江明体新材料科技有限公司年产10000吨聚醚多元醇弹性体建设项目环评报告
- GB/T 27030-2025合格评定第三方符合性标志的通用要求
- 2025年煤矿招聘笔试试题及答案
- 肺癌胸腔积液患者护理
- 老年法律知识讲座
- DB43T-用水定额 第1部分:农业
- 社交媒体在职场人际关系中的作用分析
- 医疗行业员工激励与稳定措施
- 《户外探险》课件
- 《老年人出院准备服务指南》
评论
0/150
提交评论