




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.1单调性,复习引入:问题1:怎样利用函数单调性的定义来讨论其在定义域的单调性,1一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量的值x1,x2,当x1x2时,(1)若f(x1)f(x2),那么f(x)在这个区间上是增函数.(2)若f(x1)f(x2),那么f(x)在这个区间上是减函数.,发现问题:用单调性定义讨论函数单调性虽然可行,但十分麻烦,尤其是在不知道函数图象时.例如yx32x2x.是否有更为简捷的方法呢?下面我们通过函数yx24x3的图象来考察单调性与导数有什么关系,2,.,.,.,.,.,.,.,观察函数yx24x3的图象:,总结:该函数在区间(,2)上单减,切线斜率小于0,即其导数为负,在区间(2,)上单增,切线斜率大于0,即其导数为正.而当x2时其切线斜率为0,即导数为0.函数在该点单调性发生改变.,结论:一般地,设函数yf(x)在某个区间内可导,则函数在该区间如果f(x)0,注意:如果在某个区间内恒有f(x)0,则f(x)为常数函数.,如果f(x)0,则f(x)为增函数;,则f(x)为减函数.,例1:求函数f(x)2x36x27的单调区间.,解:函数的定义域为R,f(x)6x212x,令6x212x0,解得x0或x2,则f(x)的单增区间为(,0)和(2,),再令6x212x0,解得0x2,则f(x)的单减区间(0,2).,注:当x0或2时,f(x)0,即函数在该点单调性发生改变.,单增区间:(,1)和(1,).,单减区间:(1,0)和(0,1).,例2:讨论函数的单调性,总结:根据导数确定函数的单调性:,1.确定函数f(x)的定义域.,2.求出函数的导数.,3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应用性能工具集创新创业项目商业计划书
- 大豆调味品创新创业项目商业计划书
- 树莓种植园创新创业项目商业计划书
- 水果罐头初级制作创新创业项目商业计划书
- 心理韧性培养创新创业项目商业计划书
- 无公害蔬菜罐头创新创业项目商业计划书
- 应收账款管理与催收系统创新创业项目商业计划书
- 广告创意团队创新创业项目商业计划书
- 小麦深加工副产品饲料配方创新创业项目商业计划书
- 2025年中职数学考试题及答案
- 无人机飞防应急处置预案
- 四川蜀道养护集团有限公司招聘笔试题库2025
- 高一历史第一次月考卷02(考试版)(新高考适用)
- 2025年家政服务员劳务合同范文
- 2025-2026学年高一数学上学期第一次月考试题(考试版A4)
- 建筑公司法务知识培训课件
- 2025.9.3抗战胜利大阅兵初高中学生征文(高中):观九三阅兵有感
- 电梯维保流程课件
- 70周岁老人驾考三力测试题库及答案
- 2025年《临床执业医师》考试试卷及参考答案
- 镇静催眠药物临床合理使用指南
评论
0/150
提交评论