时间序列实验指导书正文.doc_第1页
时间序列实验指导书正文.doc_第2页
时间序列实验指导书正文.doc_第3页
时间序列实验指导书正文.doc_第4页
时间序列实验指导书正文.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验一 平稳性与纯随机性检验一、实验目的通过本实验,使学生(1)掌握时序图的绘制方法;(2)能够判断时间序列的平稳性;(3)能够检验时间序列的纯随机性。二、实验要求根据数据作图,采用时序图检验和自相关图直观判断序列是否平稳,利用LB统计量检验时间序列是否为纯随机性序列,并按具体的题目要求完成实验报告。三、实验内容实验题目:1945-1950年费城月度降雨量数据如下(单位:mm),见下表。69.3 80.0 40.9 74.9 84.6 101.1 225.0 95.3 100.6 48.3 144.5 128.338.4 52.3 68.6 37.1 148.6 218.7 131.6 112.8 81.8 31.0 47.5 70.196.8 61.5 55.6 171.7 220.5 119.4 63.2 181.6 73.9 64.8 166.9 48.0137.7 80.5 105.2 89.9 174.8 124.0 86.4 136.9 31.5 35.3 112.3 143.0160.8 97.0 80.5 62.5 158.2 7.6 165.9 106.7 92.2 63.2 26.2 77.052.3 105.4 144.3 49.5 116.1 54.1 148.6 159.3 85.3 67.3 112.8 59.4(1)计算该序列的样本自相关系数(k=1,2,24)。(2)判断该序列的平稳性。(3) 判断该序列的纯随机性。实验步骤:第一步: 编程建立SAS数据集。第二步: 利用Gplot程序对数据绘制时序图。第三步: 从时序图中利用平稳时间序列的定义判断是否平稳。第四步: 利用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳。第五步: 根据输出的Identify语句中的纯随机检验结果,利用LB统计量和白噪声特性检验时间序列是否为纯随机序列。实验二 ARMA模型的应用一、实验目的通过本实验,使学生能够运用SAS统计软件,对给出实际问题的平稳时间序列通过模型识别、参数估计、模型检验、模型优化等过程,建立符合实际的时间序列模型,并预测将来。二、实验要求处理数据,掌握平稳时间序列的ARMA模型的建模过程和方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:某地区连续74年的谷物产量(单位:千吨)如下:0.970.451.611.261.371.431.321.230.840.891.181.331.210.980.910.611.230.971.100.740.800.810.800.600.590.630.870.360.810.910.770.960.930.950.650.980.700.861.320.880.680.781.250.791.190.690.920.860.860.850.900.540.321.401.140.690.910.680.570.940.350.390.450.990.840.620.850.730.660.760.630.320.170.46(1) 判断该序列的平稳性与纯随机性。(2) 选择适合模型拟合该序列的发展。(3) 利用拟合模型,预测该地区未来5年的谷物产量。实验步骤:第一步:编程建立SAS数据集。第二步:利用Gplot程序对数据绘制时序图。第三步:从时序图中利用平稳时间序列的定义判断是否平稳?利用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳?第四步:根据输出的Identify语句中的纯随机检验结果,利用LB统计量和白噪声特性检验时间序列是否为纯随机序列?第五步:在序列判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。第六步:根据样本自相关系数和偏自相关系数的性质,选择阶数适当的ARMA(p, q)模型进行拟合。第七步:估计模型中未知参数的值。第八步:检验模型的有效性。如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。第九步:模型优化。如果拟合模型通过检验,仍然转向步骤2,充分考虑各种可能建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。第十步:利用最优拟合模型,预测序列的将来走势。实验三 时间序列的线性与非线性趋势拟合一、实验目的通过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,掌握非平稳时间序列的确定性部分的分离方法,建立合适的某一类确定性模型。二、实验要求处理数据,掌握非平稳时间序列的确定性模型的识别的方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:爱荷华州19481979年非农产品季度收入数据如表48所示。601 604 620 626 641 642 645 655 682 678 692 707736 753 763 775 775 783 794 813 823 826 829 831830 838 854 872 882 903 919 937 927 962 975 9951001 1013 1021 1028 1027 1048 1070 1095 1113 11431154 11731178 1183 1205 1208 1209 1223 1238 1245 1258 1278 1294 13141323 1336 1355 1377 1416 1430 1455 1480 1514 15451589 16341669 1715 1760 1812 1809 1828 1871 1892 1946 19832013 20452048 2097 2140 2171 2208 2272 2311 2349 2362 24422479 25282571 2634 2684 2790 2890 2964 3085 3159 3237 33583489 35883624 3719 3821 3934 4028 4129 4205 4349 4463 4598 4725 48274939 5067 5231 5408 5492 5653 5828 5965通过分析数据,选择适当模型拟合该序列长期趋势。实验步骤:第一步:编程建立SAS数据集。第二步:调用Gplot程序对数据绘制时序图。第三步:从时序图中观察时间序列是否有趋势,有何种趋势,选择适当的趋势模型分离数据中的确定性部分。实验四 ARIMA模型一、实验目的通过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。二、实验要求处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:某城市连续14年的月度婴儿出生率数据如下表所示:26.66323.59826.93124.74025.80624.36424.47723.90123.17523.22721.67221.87021.43921.08923.70921.66921.75220.76123.47923.82423.10523.11021.75922.07321.93720.03523.59021.67222.22222.12323.95023.50422.23823.14221.05921.57321.54820.00022.42420.61521.76122.87424.10423.74823.26222.90721.51922.02522.60420.89424.67723.67325.32023.58324.67124.45424.12224.25222.08422.99123.28723.04925.07624.03724.43024.66726.45125.61825.01425.11022.96423.98123.79822.27024.77522.64623.98824.73726.27625.81625.21025.19923.16224.70724.36422.64425.56524.06225.43124.63527.00926.60626.26826.46225.24625.18024.65723.30426.98226.19927.21026.12226.70626.87826.15226.37924.71225.68824.99024.23926.72123.47524.76726.21928.36128.59927.91427.78425.69326.88126.21724.21827.91426.97528.52727.13928.98228.16928.05629.13626.29126.98726.58924.84827.54326.89628.87827.39028.06528.14129.04828.48426.63427.73527.13224.92428.96326.58927.93128.00929.22928.75928.40527.94525.91226.61926.07625.28627.66025.95126.39825.56528.86530.00029.26129.01226.99227.897(1)选择适当模型拟和该序列的发展(2)使用拟合模型预测下一年度该城市月度婴儿出生率实验步骤:第一步:编程建立SAS数据集;第二步:调用Gplot程序对数据绘制时序图;第三步:从时序图中利用平稳时间序列的定义判断是否平稳?调用ARIMA程序对数据进行分析,根据输出的Identify语句中的样本自相关图,由平稳时间序列的特性判断是否平稳;第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤;第五步:根据输出的Identify语句中的纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的时间序列是否为纯随机序列?第六步:在序列判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值,选择阶数适当的ARIMA(p,d,q)模型进行拟合,并估计模型中未知参数的值。第七步:检验模型的有效性。如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。第八步:模型优化。如果拟合模型通过检验,仍然转向步骤6,充分考虑各种可能建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。第九步:利用最优拟合模型,预测下一年度该城市月度婴儿出生率。实验五 Auto-Regressive模型一、实验目的通过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,通过确定性因素分解方法提取序列中主要的确定性信息、对残差序列拟合自回归模型,建立Auto-Regressive模型。 二、实验要求处理数据,掌握非平稳时间序列的Auto-Regressive建模方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:19521988年中国农业实际国民收入指数数据如下表所示。100.0 101.6 103.3 111.5 116.5 120.1 120.3 100.6 83.6 84.7 88.7 98.9 111.9 122.9 131.9 134.2 131.6 132.2 139.8 142 140.5 153.1 159.2 162.3 159.1 155.1 161.2 171.5 168.4 180.4 201.6 218.7 247 253.7 261.4 273.2 279.4 通过分析数据,选择适当Auto-Regressive模型拟合该序列。实验步骤:第一步:编程建立SAS数据集;第二步:调用Gplot程序对数据绘制时序图。第三步:从时序图中是否显示有明显的随时间线性增长的趋势,同时又有一定规律的波动?调用AUTOREG程序对数据进行分析,建立因变量关于时间的回归模型和延迟因变量回归模型。第四步:分别检验以上两种模型残差序列的自相关性,如果检验结果显示残差序列具有显著自相关性,建立残差自回归模型。并比较这两种残差自回归模型的优劣。实验六 GARCH模型一、实验目的通过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,对异方差序列拟合GARCH模型。 二、实验要求处理数据,掌握异方差序列的GARCH建模方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:某金融时间序列的数据如下表所示。143.1140.3139.4140.7139.6140.4141.2140.9141.3141.7142.8144.7144.4140.9139.5140.8138.7139 140 140.4 141.6142.3143.4145.7145.7142.8141.8143.5141.8142.4142.8142.7144.3145.7147.6150.5150.2146.9146 148 145.8146.2146.4145.8146.9148.4150.2153.3153.6150.1149.3151.5149.3151.4151.3150.9152.5154.4156.7159159.4155.4154.6156.8154.2155.5157.1157 159.4161.3163.1166.4166.9161.9161.5164.2160.3162.2163.5162.8165.6168.2169.9174.4175.6170.3170.4174.1169.6171.7171 170 172.7173.4174.6178.6178.4173.4174.6176.6174.1177.4179.1179 181.7183.9185.7190.3189 184.9185.4189.3186.5190.2191.9191.4193.9196.3199.6204.8205.9199.3199.8203.6199.4202.3203.3201.5203.2205 207 211.4212.9204 205.5210.1206.2208.9210.1210 212.8214.4216.7222.2222.6216.6218.6223.7221.1225.2227.5225.9227.7229.1231.2236.9237.5231.4234.2239.5234.7238.8241.8241.3244.5247 250.5258.9259.4251.2251.6257 253.6259.3261.1258.6259.5261.4265.6273.3271.8264.1266.5271.6266.3271.5273.5271 272.6274.8278.8285.2281.8273.3276.4281.4278.1286 288 286.3287.8288.5293.5299296.8289 291.4299.9295.1299.4302.3301 302.5307 309.7318.6317.7309 312.2322.7315.6321.7326.3324.3327.7332 335.4344.1343.4332 334.9347.5342.4349.4353.9351.7357 359.4362.9372.5367.8356.4360.8376.2367.1376.7383.3381.9385.6387.7389.8398.6390.7380.9382.4387.1377.8387.6394.8398.5404.9411 416.1419.8416.5405.7412.5431.3418.6423 427.9426.1427.3429.8435.2447.2448.7432.6435.8451.3441.1446.5449.6450 456.4466 474.5486483 474.2482.9498.7494.1503.7510.7508.5511.5517.4522.1533.4530.4517.6524.2539.2530.8541.4543.3539 542.5542.1549.6564.5561.1551.9558.3575 569.4585.2592 594.8602.2605.5615.1633.5626.8613.1624.6647.2645.7663.5674 679.1685.2692.8709.5740.6737.5717.1723.5752.5739.9744.4746.8745 745.2753.7756765.9764.7745 752.1778.3763.8778.8785.6781.3780 780.8787.1803.2793 772.3775.2791.3767.2773.8781.7777.4778.5784.5791.4811.9802.4788.3796.2818 797.3810.8812.9814.5818.9817.6826.1844.3833.2823.4835 852.9841.9857.8861.9864.2867.3875 893.4916.8918.1916.5通过分析数据,选择适当GARCH模型拟合该序列。实验步骤:第一步:编程建立SAS数据集;第二步:调用Gplot程序对数据绘制时序图。第三步:从时序图中是否显示有明显的随时间线性增长的趋势,同时又有一定规律的波动?调用AUTOREG程序对数据进行分析,建立延迟因变量回归模型。第四步:检验残差序列的自相关性和异方差性,如果检验结果显示残差序列具有显著的异方差性,则建立条件异方差模型。 实验七 综合实验一、实验目的通过本实验,使学生能够利用SAS统计软件,对给出实际问题的非平稳时间序列进行分析,通过确定性因素分解方法提取序列中主要的确定性信息,然后检验残差序列的自相关性,建立合适的Auto-Regressive模型;若存在异方差性,则建立合适的ARCH模型或GARCH模型。二、实验要求处理数据,掌握残差序列的建模方法,并根据具体的实验题目要求完成实验报告。三、实验内容实验题目:1969年月1994年9月澳大利亚储备银行2年期有价证券利率数据如下表:4.9955.035.035.255.265.35.455.495.525.75.685.655.86.56.456.486.456.356.46.436.436.446.456.486.46.356.46.36.326.356.135.75.585.185.185.175.155.215.235.054.654.654.64.674.694.684.624.634.95.445.566.046.066.068.078.078.18.058.068.078.068.118.610.81111119.489.188.628.38.478.448.448.468.498.548.548.58.448.498.48.468.58.58.478.478.478.488.488.548.568.398.899.919.899.919.919.99.889.869.869.749.429.279.268.998.838.838.838.828.838.838.798.798.698.668.678.728.7799.619.79.949.949.949.959.949.969.9710.8310.7511.211.411.5411.511.3411.511.511.5812.4212.8513.113.1213.113.1513.11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论