2020版高中数学 第三章 概率 3.3 随机数的含义与应用 3.4 概率的应用课件 新人教B版必修3.ppt_第1页
2020版高中数学 第三章 概率 3.3 随机数的含义与应用 3.4 概率的应用课件 新人教B版必修3.ppt_第2页
2020版高中数学 第三章 概率 3.3 随机数的含义与应用 3.4 概率的应用课件 新人教B版必修3.ppt_第3页
2020版高中数学 第三章 概率 3.3 随机数的含义与应用 3.4 概率的应用课件 新人教B版必修3.ppt_第4页
2020版高中数学 第三章 概率 3.3 随机数的含义与应用 3.4 概率的应用课件 新人教B版必修3.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3随机数的含义与应用3.4概率的应用,第三章概率,学习目标1.通过具体问题感受几何概型的概念,体会几何概型的意义.2.会求一些简单的几何概型的概率.3.了解随机数的意义,能用计算机随机模拟法估计事件的概率.4.应用概率解决实际问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一几何概型的概念,思考往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?,答案出现的结果是无限个;每个结果出现的可能性是相等的.,梳理1.几何概型的定义事件A理解为区域的某一子区域A,如图,A的概率只与子区域A的(长度、面积或体积)成,而与A的和无关.满足以上条件的试验称为.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有.(2)每个基本事件出现的可能性.,几何度量,正比,位置,形状,几何概型,无限多个,相等,思考既然几何概型的基本事件有无限多个,难以像古典概型那样计算概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?,知识点二几何概型的概率公式,答案可以用事件A所占有的几何量与总的基本事件所占有的几何量之比来表示.,梳理几何概型的概率计算公式在几何概型中,事件A的概率定义为:,其中,表示_,A表示_.,区域,的几何度量,子区域A的几何度量,知识点三均匀随机数,1.随机数随机数就是在,并且得到这个范围内的_.2.计算机随机模拟法或蒙特卡罗方法建立一个概率模型,它与某些我们有关,然后设计适当的试验,并通过这个试验的结果来.按照以上思路建立起来的方法称为计算机随机模拟法或蒙特卡罗方法.,一定范围内随机产生的数,每一个,数的机会一样,感兴趣的量,确定这些量,思考辨析判断正误1.与面积有关的几何概型的概率与几何图形的形状有关.()2.随机模拟方法是以事件发生的频率估计概率.(),题型探究,例1下列关于几何概型的说法错误的是A.几何概型是古典概型的一种,基本事件都要具有等可能性B.几何概型中事件发生的概率与它的形状或位置无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性,题型一几何概型的识别,答案,解析,解析几何概型和古典概型是两种不同的概率模型,几何概型中的基本事件有无限多个,古典概型中的基本事件为有限个.,反思与感悟几何概型特点的理解(1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.,跟踪训练1判断下列概率模型是古典概型还是几何概型.(1)先后抛掷两枚质地均匀的骰子,求出现两个“4点”的概率;(2)如图所示,图中有一个转盘,甲、乙玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.,解答,解先后抛掷两枚质地均匀的骰子,所有可能结果有6636(种),且它们的发生都是等可能的,因此属于古典概型.解游戏中指针指向B区域时有无限多个结果,且它们的发生都是等可能的,而且不难发现“指针落在阴影部分”的概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.,题型二几何概型的计算,命题角度1与长度有关的几何概型例2某公共汽车站,每隔15分钟有一辆车发出,并且发出前在车站停靠3分钟,求乘客到站候车时间大于10分钟的概率.,解答,解如图所示,设相邻两班车的发车时刻为T1,T2,T1T215.,设T0T23,TT010,记“乘客到站候车时间大于10分钟”为事件A.则当乘客到站时刻t落到T1T上时,事件A发生.因为T1T153102,T1T215,,解答,引申探究1.本例中在题设条件不变的情况下,求候车时间不超过10分钟的概率.,解由原题解析图可知,当t落在TT2上时,候车时间不超过10分钟,,2.本例中在题设条件不变的情况下,求乘客到达车站立即上车的概率.,解由原题解析图可知,当t落在T0T2上时,乘客立即上车,,反思与感悟若一次试验中所有可能的结果和某个事件A包含的结果(基本事件)都对应一个长度,如线段长、时间区间长、距离、路程等,那么需要先求出各自相应的长度,然后运用几何概型的概率计算公式求出事件A发生的概率.,解答,跟踪训练2平面上画了一些彼此相距2a的平行线,把一枚半径为r(ra)的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.,解记“硬币不与任何一条平行线相碰”为事件A,如图,由图可知,硬币圆心在线段AB上的任意一点的出现是等可能的.圆心在线段CD(不含点C,D)上出现时硬币不与平行线相碰,,命题角度2与面积有关的几何概型例3设点M(x,y)在区域(x,y)|x|1,|y|1上均匀分布出现,求:(1)xy0的概率;,解如图,满足|x|1,|y|1的点(x,y)组成一个边长为2的正方形(ABCD)区域(含边界),S正方形ABCD4.xy0的图象是直线AC,满足xy0的点在AC的右上方(含AC),,解答,(2)xy1的概率;,解设E(0,1),F(1,0),则xy1的图象是EF所在的直线,满足xy1的点在直线EF的左下方,即在五边形ABCFE内(不含边界EF),,解答,(3)x2y21的概率.,解答,解满足x2y21的点是以原点为圆心的单位圆O,SO,,反思与感悟如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域的某个指定区域内的点,且该区域中的每一个点被取到的机会都一样,这样的概率模型就可以视为几何概型,并且这里的区域可以用面积表示,利用几何概型的概率公式求解.,跟踪训练3欧阳修卖油翁中写到,(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌沥之,自钱孔入而钱不湿.若铜钱是直径为3cm的圆,中间有一个边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是,答案,解析,解答,命题角度3与体积有关的几何概型例4已知正三棱锥SABC的底面边长为a,高为h,在正三棱锥内取点M,试求点M到底面的距离小于的概率.,解如图,分别在SA,SB,SC上取点A1,B1,C1,使A1,B1,C1分别为SA,SB,SC的中点,,答案,解析,跟踪训练4在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为,解析由题意可知这是一个几何概型,棱长为1的正方体的体积V11,球的直径是正方体的体对角线长,,题型三均匀随机数及随机模拟方法,解答,例5在如图所示的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值.,解随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,,由于落在每个区域的豆子数是可以数出来的,,所以就得到了的近似值.,反思与感悟(1)用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.(2)用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.,解答,跟踪训练5利用随机模拟方法计算由y1和yx2所围成的图形的面积.,解以直线x1,x1,y0,y1为边界作矩形,(1)利用计算器或计算机产生两组01区间的均匀随机数,a1RAND,bRAND;(2)进行平移和伸缩变换,a2(a10.5);(3)数出落在阴影内的样本点数N1,用几何概型公式计算阴影部分的面积.,例如做1000次试验,即N1000,模拟得到N1698,,达标检测,1.下列概率模型是几何概型的为A.已知a,b1,2,3,4,求使方程x22axb0有实根的概率B.已知a,b满足|a|2,|b|3,求使方程x22axb0有实根的概率C.从甲、乙、丙三人中选2人参加比赛,求甲被选中的概率D.求张三和李四的生日在同一天的概率(一年按365天计算),答案,解析,1,2,3,4,5,解析对于选项B,a,b满足的条件为坐标平面内某一区域,涉及面积问题,为几何概型,其他三个选项均为古典概型.,2.面积为S的ABC,D是BC的中点,向ABC内部投一点,那么点落在ABD内的概率为,答案,解析,解析向ABC内部投一点的结果有无限个,属于几何概型.设点落在ABD内为事件M,,1,2,3,4,5,3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是,则阴影区域的面积是,解析在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A,则事件A构成的区域是阴影部分.设阴影区域的面积为S,全部结果构成的区域面积是正方形的面积,,1,2,3,4,5,解析,答案,4.在200mL的水中有一个草履虫,现从中随机取出20mL水样利用显微镜观察,则发现草履虫的概率是_.,解析记“从200mL水中随机取出20mL水样利用显微镜观察,发现草履虫”为事件A,,解析,1,2,3,4,5,答案,0.1,5.在区间0,1上任取三个数a,b,c,若向量m(a,b,c),求|m|1的概率.,1,2,3,4,5,解答,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论