




已阅读5页,还剩56页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕 业 设 计 题 目: 年产20万吨甲醇制二甲醚工艺设计 学 院: 化学与材料工程学院 专 业: 化学工程与工艺 姓 名: 学 号: 完成时间: 2014.3.252014.5.20 河南城建学院本科毕业设计 设计说明设计说明作为液化石油气(LPG)和石油类的替代燃料,目前二甲醚(DME)倍受注目。DME是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。目前生产的二甲醚基本上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采用气相法制备二甲醚工艺。将甲醇加热蒸发,甲醇蒸气通过-AL2O3催化剂床层,气相甲醇脱水制得二甲醚。气相法的工艺过程主要由甲醇加热、蒸发、甲醇脱水、二甲醚冷凝及精馏等组成。甲醇气相法合成二甲醚是目前国内外二甲醚生产的主要工艺,该法以精甲醇为原料,脱水反 脱水和二甲醚精馏等工艺。目前国外公布的大型二甲醚建设项目绝大多数采用两步法工艺技术,说明甲醇气相法有较强的综合竞争力。关键词:二甲醚,甲醇,工艺设计I河南城建学院本科毕业设计 Design specificationDesign specification As LPG and oil alternative fuel, DME has drawn attentions at present. Physical properties of DME is similar for LPG, and dont produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources, DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl etherby methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating methanol to evaporation, methanol vapor through the -Al2O3 catalyst bed, vapor methanol dehydration to dimethyl etherby2. This process is made of methanol process heating, evaporation, dehydration of methanol, dimethyl ether condensation and distillation etc.Methanol gas phase method synthesis of dimethyl ether is at home and abroad and dimethyl ether, the main technology of production with fine methanol as raw materials, dehydrated, reaction by-products less, dimethyl ether purity of 99.9%, the craft is mature, the device wide adaptability, simple post-treatment, can be directly built in methanol production factory, also can be built in other public facilities good the methanol production factory. The law should pass methanol synthesis, methanol distillation, methanol dehydration and dimethyl ether distillation, etc. At present foreign large dimethyl ether released most of the construction project by two-step process technology, explain methanol gas phase method has the strong comprehensive competitive power. Key words: dimethyl ether, methanol, process design河南城建学院本科毕业设计 目录目 录前言11 绪论21.1 二甲醚概述21.1.1 二甲醚的发展现状21.1.2 二甲醚的传统领域的应用及其拓展21.2 国内二甲醚市场简况31.2.1 现状31.2.2 国内市场预测41.3 国外二甲醚市场简况51.3.1 现状51.3.2 国外市场预测61.4 原料说明61.5 二甲醚的性质71.6 二甲醚的主要技术指标82 DME产品方案及生产规模92.1 产品品种、规格、质量指标及拟建规模92.2 产品规格、质量指标92.3 产品方案分析及生产规模分析93 工艺流程介绍113.1 生产方法简述113.2 工艺流程说明123.3 生产工艺特点133.4 主要工艺指标143.4.1 二甲醚产品指标143.4.2 催化剂的使用144主要塔设备计算及选型154.1 汽化塔及其附属设备的计算选型154.1.1 物料衡算154.1.2 热量衡算174.1.3 理论板数、塔径、填料选择及填料层高度的计算194.1.4 汽化塔附属设备的选型计算224.2 合成塔及其附属设备的计算选型234.2.1 物料衡算234.2.2 合成塔的选取234.2.3 热量衡算及附属设备的选型计算234.3 精馏塔及其附属设备的计算选型264.3.1 物料衡算264.3.2 热量衡算274.3.3 理论塔板数的计算284.3.4 精馏塔主要尺寸的设计计算294.3.5塔径设计计算304.3.6 填料层高度的计算314.3.7 附属设备的选型计算314.3.8 塔板的流体力学验算344.3.9 塔板负荷性能图354.4 回收塔及其附属设备的计算选型374.5.1 物料衡算374.4.2 热量衡算384.4.3 理论塔板数的计算394.4.4 回收塔主要尺寸的设计计算404.4.5塔径设计计算414.4.6 填料层高度的计算424.4.7 附属设备的选型计算425 全厂总平面布置445.1 全厂总平面布置的任务445.2 全厂总平面设计的原则445.3 全厂总平面布置内容445.4 全厂平面布置的特点455.5 全厂人员编制456 设计的体会和收获46参考文献47附 录48致 谢51iii河南城建学院本科毕业设计 主要符号说明主要符号说明1 英文字母CP恒压热容,KmolKN塔板数;理论板数;筛孔数D塔顶馏出液流量,kmol/h;塔径,m;Np实际塔板数;do筛孔直径,mm;NT理论塔板数;E液流收缩系数,无因次;P操作压强;塔顶产品量, Kmol/hET全塔效率(总板效率),无因次;P压强降,eV雾沫夹带量,kg(液)/kg(气);q进料热状态参数;F进料流量,kmol/h;气相动能因数,m/s(kg/m3)1/2;Q传热速率或热负荷,KJ/hH塔高,m;R回流比;开孔区半径,m;HT板间距,m;T温度,KhC与干板压降相当的液柱高度,m;t筛孔中心距,mm;h1进口堰与降液管间的水平距离m;,t筛孔中心距,mm;VS塔内上升蒸气流量,m3/s;u空塔气速,m/s;hL板上液层高度,m;V塔内上升蒸气流量,kmol/h;ho降液管底隙高度,m;液体密度校正系数how堰上液层高度,m;W釜残液(塔底产品)流量,kmol/h;HV汽化热,KJ/KmolWd弓形降液管宽度,m; y气相中易挥发组分的摩尔分率;WC无效区宽度,m;K相平衡常数;浮阀的稳定性系数 WS安定区宽度,m;L塔内下降液体的流量,kmol/h;x液相中易挥发组分的摩尔分率;LS塔内下降液体的流量,m3/s;开孔率;lw溢流堰长度,m;uo降液管底隙处液体流速,m/s;M分子量,kg/kmoluo筛孔气速,m/s;h与克服液体表面张力的压降所当的液柱高度,m; hd与液体流经降液管的压降相当的液柱高度,m; hl与气流穿过板上液层的压降相当的液柱高度,m;hP与单板压降相当的液层高度,m;2 希腊字母:a相对挥发度r密度,Kg/m3d表面张力,达因/cmm粘度,mpaS3 下标:A轻关键组分L液相B重关键组分V气相C非重关键组分m平均D馏出液min最小或最少F原料液max最大的W残液量T理论的i组分序号P实际的河南城建学院本科毕业设计 前言前言二甲醚又称甲醚、木醚氧、二甲,是最简单的脂肪醚重要的甲醇下游产品之一。二甲醚的理化性质比较独特,热植高,无毒、无害,具有潜在的广泛用途,除作为有机化工原料广泛用于制药、染料、农药等,还用于替代氟里昂用作汽溶胶喷射剂和制冷剂,由于其良好的燃料性能,具有实用、通用、环保、安全、质优价廉的优点,最近作为民用代用燃料和柴油代用燃料,二甲醚受到人民的日益重视1。20世纪70年代,二甲醚开始被用作气雾剂,以取代破坏臭氧层的氟里昂。近几年来,在各国寻求清洁燃料的过程中,二甲醚的良好燃烧性能和低污染排放的特性使其日益受到重视。二甲醚作为清洁燃料具备如下特征:资源量丰富,来源广; 环境友好,其排放物对环境的影响很小; 技术可行、成熟,可在大范围内使用; 经济可行,其成本有竞争力; 易于实现,其运行所需要的基础设施和现有基础设施基本相容,不需要另装一套装置。本设计流程简洁明畅,工艺条件温和,操作简易方便。而且设备台数较少,设备制作立足于国内现状,均能在国内制造而不需进口,可大大降低项目投资。其它各项效益指标及盈亏平衡分析结果均表明本项目具有很强的抗风险能力。上述各方面问题的研究结果表明,20万吨/年二甲醚项目符合国家产业政策和未来能源市场发展方向,市场预测乐观,工艺方案合理,工艺技术成熟可靠。本设计包括设计说明书和图纸两部分。说明书主要包括工艺流程的确定,物料衡算,热量衡算,工艺设备的设计及选型,厂房平面布置,还有进行初步的经济分析等。图纸包括工艺流程图,主设备图,车间布置平面等。8 河南城建学院本科毕业设计 绪论1 绪论1.1 二甲醚概述1.1.1 二甲醚的发展现状 自20世纪70年代,二甲醚开始被用作气雾剂,以取代破坏臭氧的氟利昂。近几年来,在各国寻求清洁车用替代燃料的过程中,二甲醚的良好燃烧性能和低污染排放特性使其日益受到重视。二甲醚(DME)常温常压下是一种无色低毒的可燃性气体,性能与液化石油气相似,燃烧时不析碳,无残液,燃烧废气无毒,是一种理想的清洁燃料。DME还是一种新型的、理想的、可替代车用燃料的“21世纪的绿色燃料”。随着环境污染的日益严重及石油资源的日益匮乏,对二甲醚的需求量迅速增加,因此二甲醚的合成研究已成为各国科技人员的研究焦点。二甲醚是21世纪的超清洁燃料,无论是作为民用燃料、或替代柴油、汽油作为汽车燃料、或是用于发电,其制备、储运等都比较容易解决,并能促进新一代汽车、电力等工业的发展。目前,二甲醚发展的关键问题在于配套措施不完善、市场发展不成熟、二甲醚使用观念有待更新。1.1.2 二甲醚的传统领域的应用及其拓展 传统领域的应用第一,做气雾剂、制冷剂和发泡剂。DME作为停止使用的氯氟烃的替代物,在气雾剂制品中显示出良好的性能,如:1、不污染环境,对臭氧破坏系数为零;2、DME在水中溶解度为34%,若加6%的乙醇,则可与水混溶,它与各种树脂也有极高的溶解能力;3、毒性很微弱,用在化妆品上观察不到有什么问题;4、可用水或氟制剂作阻燃剂;5、使喷雾产品不易致潮,加之与其他气雾剂相比,其成本低、价格便宜从而被认为是新一代理想的气雾推进剂。在西欧各国已经成为民用气溶胶制品的氯氟烃的替代品。目前DME在世界喷射剂的用量中居第二位,仅次于碳氢化合物,其次,由于DME容易液化的特性,许多国家正在开发以DME代替氯氟烃做制冷剂的技术。第二,DME作为化学中间体,主要用于制造硫酸二甲酯。DME同发烟硫酸反应可以生成硫酸二甲酯;同苯胺反应生成高纯N,N-二甲基苯胺,脱水成乙烯,羰基化可以制取醋酸甲酯;与硫化氢反应生成二甲基硫醚,进而可生成二甲基亚砜。除此之外DME还是重要的化工原料,可用于许多精细化学品的合成,同时在轻化、制药、燃料、农药等工业中有许多独特的用途。 新近拓展的应用领域作为新型高效清洁燃料是DME应用领域的一个崭新的拓展应用领域。DME作为民用燃料比液化气具有更优良的物理化学性能(如表1.1,表1.2所示)。由于DME的分子结构与烃类不同,只有C-H与C-O键,没有C-C键,所以燃烧时无黑烟,CO与NOx排放量很低,符合洁净燃料的要求;而且燃烧性能良好,燃烧废气无毒,完全符合卫生标准;单一组成,无残液;在室温下可压缩成液体,用现有的液化石油气罐盛装,燃具与LPG基本通用,是优良的民用洁净燃料。当温度在37.8时,二甲醚的蒸汽压低于1378kPa,符合液化石油气的要求(如表1.1)所示。表1.1 DME液化气与液化石油气性质比较6项目分子量压力Mpa(60)燃烧温度爆炸下限%理论空气量预混气热值kJ/ m3LPGDME56.646.071.921.35205522501.73.4511.326.9639034219表1.2 DME与0柴油的比较对比项目DME0柴油分子量46.07190220沸点()-24.9180360十六烷值55604050低热值(kJ/kg)2884042500理论空燃比914.6氧含量(%)34.8硫化物有1.2 国内二甲醚市场简况1.2.1 现状中国DME生产起步较晚,但发展加快。1994年广东中山化工厂建成2500吨/年DME生产装置。此前,只有江苏昆山化工厂有少量生产。近几年,国内陆续又有一些厂家投产DME,其中生产规模较大的有山东临沂鲁明化工有限公司等年总产量已超过50万吨。表1.3 2006年我国DME主要生产厂家及其能力企业生产工艺生产能力(吨/年)广东中山凯达有限公司重庆英力燃化有限公司江苏昆山化工厂武汉青江公司吴县合成化学厂上海申威气雾剂公司河南沁阳紫阳乡河南内乡化工局无锡新苑化工集团贵州宏华新能源公司榆次燃料化工公司安徽蒙城化肥厂义乌光阳化工公司渭河煤化工集团公司陕西新型燃料燃具公司山西浑源化肥厂山东临沂鲁明化工有限公司湖北田力实业公司广州广氮集团公司云南解化集团公司山东久泰股份有限公司湖南雪纳新能源有限公司中国泸天化股份有限公司中国泸天化股份有限公司山西潞安陕西神华宁夏银川内蒙古鄂尔多斯市-山东临沂市两步法-气相脱水浆态床一步法两步法-气相脱水两步法-液相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水浆态床一步法两步法-液相脱水固定床一步法两步法-气相脱水两步法-液相脱水两步法-液相脱水两步法-气相脱水两步法-气相脱水两步法-气相脱水古定床一步法流态床一步法流态床一步法流态床一步法12500(94/98年分期投产)3000(04年4月试产/已停)1000(91年3月试产)1500(95年9月试产)1000(96年7月试产)800(95年3月试产)10000(04年1月试产)10000(04年8月试产)10000(03年5月试产)5000(05年3月试产)10000(04年12月试产)5000(04年10月试产)2500(98年9月试产)10000(05年10月试产)500(97年6月试产)5000(01年1月试产)5000(04年12月试产)1500(97年9月试产,现停产)5000(98年10月试产)5000(06年2月试产)30000(05年12月试产)30000(05年11月投产)10000(03年8月投产)100000(05年9月投产)150000(筹建中)200000(筹建中)830000(筹建中)1000000(筹建中)近几年DME生产规模较大的有山东临沂鲁明化工有限公司、广东中山精细化工实业有限公司、江苏吴县合成化工厂、江苏昆山化工原料厂、湖南雪纳新能源有限公司、山东久泰科技股份有限公司等企业,年总产量已超过10万吨。国内上述大部分企业生产的DME产品主要面向气雾剂市场,到2005年底为止,我国DME的正常生产能力为15-20万吨/年。1.2.2 国内市场预测第一,DME作为柴油替代燃料或掺烧汽油市场。随着国民经济的发展,我国对柴油和汽油的需求量每年增长的幅度不断加大。统计数据显示,目前柴油的需求量每年的速度增长为7%, 2010年我国对进口石油的依存度将超过50%。尤其是我国环保能源特别是洁净车用燃料一直十分紧缺,因此发展清洁车用燃料成为我国经济高速发展面临的现实问题。DME作为柴油替代能源在性能上具有明显的优势,而作为汽油添加剂进行掺烧在理论上证明可以提升汽油的品质,且技术方面不存在难以克服的问题,因此这是一个普遍看好的市场。第二,DME混烃燃料市场。目前我国液化气年消费量在3500万4000万吨,每年约需进口2000万吨。DME作为超洁净能源,与液化气相比在性能上具有显著的优势。如果用DME替代进口液化气,将至少形成约2000万吨年的DME需求。第三,DME作为日用化工原料及化工中间体市场。DME除作为燃料以外,主要用于制气雾剂、制冷剂和发泡剂。DME进入这一市场的特点是附加值高,因而利润空间极大。1.3 国外二甲醚市场简况1.3.1 现状目前世界上DME的生产主要集中在美国、德国、荷兰和日本等国,2006年世界总生产能力预计29.4万吨/年,产量约22万吨,开工率75%。国外DME的主要生产厂家有美国的Dupont公司、荷兰的AKZO公司、德国的DEA公司和 UnitedRhine Lignite Fuel 公司等,其中德国DEA公司的生产能力最大为6.5万吨/年。二甲醚作为一种新型、清洁的民用和车用燃料,被看作是柴油或LPG/CNG的优秀替代品,其作为燃料的市场血球增长将会非常惊人。2000年,全球有400万辆LPG汽车,400万辆乙醇汽车、100万辆CNG汽车,还有部分甲醇汽车。以美国为例,2000年美国使用替代燃料(LPG和CNG)的汽车为42万辆,预计2020年为500万辆。目前美国替代燃料消费量折合当量汽油约为100万吨(352106)加仑当量汽油),约占当年全部燃料消费量的0.2%。如果美国代用燃料的比例提高到5%,起需求量将达到2500万吨,可见替代燃料的市场前景是相当可观的。亚洲地区是世界上柴油消费增长最快的地区,据国外研究机构预测,二甲醚作为替代燃料,2008年亚洲地区的年需求量达4000万吨,可见,由于二甲醚具有其它替代燃料不可比拟的优势,将会成为柴油的主要替代燃料,具有难以估量的市场前景。表1.4 筹建中的二甲醚装置(不完全统计) 单位:万吨/年公司名称生产能力建设地点投产日期日本财团(三菱瓦斯化学、日挥、三菱重工)140.0240.0澳大利亚(间接一步法)2006年日本东洋工程公司250中东(二步法)20052006某公司在伊朗建设80伊朗Zagros2006年规划日本钢管公司等8家170西澳大利亚(NG一步法)2006年开始规划日本三菱瓦斯化学(MGC)150澳大利亚道达尔菲纳埃尔夫公司和日本8家公司合作80小计873.0973.0世界2006年已有能力209.42010年合计能力1082.41182.41.3.2 国外市场预测随着人们环保意识的增强,二甲醚在气溶胶推进剂方面的用量逐年增加,1990年欧洲生产的4.5吨二甲醚,其中约有3.5万吨用于气溶胶工业,其它用作中间体。目前世界二甲醚的产量约为600万吨/年,预计到2020年需求量可突破3000万吨/年。从二甲醚及柴油的消耗结果表明,按能耗计,低功率下,二甲醚消耗高于柴油,但在较高功率时,二者是相近的。用二甲醚作为汽油添加剂比其它醚类化合物具有更高的O/CH值,即二甲醚的含氧量高,可以使汽油燃烧更加完全。且在某种程度上可以提高汽油的汽化效率,降低汽油的凝固点。据资料介绍,美国己将二甲醚添加到航空煤油中,这大大提高了发动机的工作效率且效果很好。目前日本和印度都研究在中东建设大型二甲醚装置,将二甲醚运回国内作发电燃料的可行性,其它许多发达国家都在进行二甲醚作为替代燃料的研究,解决全球能源紧张的局面。1.4 原料说明原料名称:甲醇,分子式CH3OH,相对分子质量32.04。本设计采用的甲醇原料浓度为90%(质量分数)。 物理性质 甲醇是最简单的饱和脂肪醇,密度0.791g/cm3,沸点63.8,自燃点38520,蒸汽压96.3mmHg,常温常压下纯甲醇是无色透明,易挥发、可燃,略带醇香味的有毒液体。甲醇可以和水以及乙醇、乙醚等许多有机液体无限互容,但不能与脂肪烃类化合物相互溶,甲醇蒸汽和空气混合能形成爆炸性混合物,爆炸极限为6.0%-36.5%(体积)。 化学性质 甲醇作为最简单的饱和脂肪醇因此具有脂肪醇的化学性质,即可进行氧化、酯化、羰基化、胺化、脱水等化学反应,在此只介绍几种重要的化学反应。1) 脱水反应甲醇在浓硫酸或其它催化剂的催化作用下脱水生成二甲醚,是工业制备二甲醚的重要方法3;主反应: 2CH3OHCH3O CH3+H2O+Q H298=10.92 kJ/mol副反应: CH3OHCO+2H2O 2CH3OHC2H4+2H2O 2CH3OHCH4+2 H2O +C CH3OCH3CH4+CO+ H2 CO+H2OCO2+ H2 2) 氧化反应 甲醇在电解银催化剂下可被空气氧化成甲醛,是重要的工业制备甲醛的方法;3) 酯化反应 甲醇可与多种无机酸和有机酸发生酯化反应,甲醇和硫酸发生酯化反应生成硫酸氢甲酯,硫酸氢甲酯经减压蒸馏生成甲基化试剂硫酸二甲酯;4) 羰基化反应 甲醇和光气发生羰基化反应生成氯甲酸甲酯,进一步反应生成碳酸二甲酯;裂解反应在铜催化剂上,甲醇可裂解生成CO和H2。1.5 二甲醚的性质 化学性质二甲醚在辐射或加热条件下会分解成甲烷、乙烷、甲醛、二氧化碳及一氧化碳(产物取决于反应条件及催化剂)。二甲醚可作为烷基化合剂,在很多场合中,它具有甲基化反应性能,例如在硅酸铝催化剂存在的条件下,二甲醚可以与苯发生烷基化反应而生成甲苯、二甲苯及多烷基苯。二甲醚与一氧化碳反应可生成乙酸或乙酸甲脂;与二氧化碳反应则生成甲氧基乙酸。当与氰化氢反应时则生成乙腈。此外,二甲醚可与三氟化硼形成络合物,其分子式(CH3)2OBF3,此络合物在空气中发烟,而在水或醇中则可分解。DME还可选择性氯化为各种氯化衍生物。无致癌性、腐蚀性甚微。 物理性质DME是具有挥发性醚味的无色气体,有令人愉快的气味,燃烧时的火焰略带光亮。在常温,常压下为气态,在压力储罐内为液体。表1.5 DME的主要物理化学性质5分子式CH3OCH3蒸汽压(20)0.53MPa摩尔质量46.07气体燃烧热31.58 kJ/kg熔点-141.5蒸发热(-24.8)467.4kJ/kg沸点-24.9自燃温度350临界温度128.8爆炸极限(空气中)3.4526.7 vol%临界压力5370Pa在汽油中的溶解度64%(-40)对水的相对密度0.66对空气的相对密度1.62液体密度(20)0.661kg/L闪点-41.4蒸汽密度(10 1atm)1.92kg/m3 DME的毒性DME的毒性很低,气体有刺激及麻醉作用的特性,通过吸入或皮肤吸收过量的此物品,会引起麻醉,失去知觉和呼吸器官损伤。小鼠吸入 225.72g/ m3 麻醉浓度猫吸入 1658.85g/ m3 深度麻醉人吸入 154.24g/ m330min 轻度麻醉人吸入 940.50g/ m3 有极不愉快的感觉、有窒息感1.6 二甲醚的主要技术指标高纯度二甲醚的生产以甲醇为主要原材料,经过催化转化制成燃料级二甲醚,再经精馏分离后制得高纯度二甲醚气体产品。其中含有微量杂质如N2、CH4、CO2、C2H4、C3H6、及少量H2O、CH3OH等组分。类别:二甲醚气体产品按有效组份含量的不同划分为:A类-燃料级DME产品;B1类-溶剂、原料级DME产品;B2类制冷剂、推进剂级DME产品5。表1.6 A级、B1级、B2级二甲醚气体产品符合下表规定的技术要求项目指 标A级B1级B2级感观二甲醚含量m/m %水份m/m 10-6 甲醇m/m 10-6 其它杂质m/m %无色、无异味,常温下为压缩液体,略呈醇香95200000020000001.099.52001000.499799.9100500.09985河南城建学院本科毕业设计 DME产方案及生产规模2 DME产品方案及生产规模2.1 产品品种、规格、质量指标及拟建规模产品品种: 二甲醚拟建规模: 20万吨/年年操作日: 365天2.2 产品规格、质量指标 气雾级二甲醚质量标准(企业标准)由于目前国内尚无气雾级二甲醚产品的国标,参照国内行业的技术标准,气雾级二甲醚产品应符合下述质量标准(企业标准) 6项目 期望值二甲醚 Wt% 99.9甲醇 Wt% 0.01水份 Wt% 0.002 燃料级二甲醚质量标准(企业标准)对燃料级二甲醚产品,目前也没有相应的国标,参照国内行业的技术标准,燃料级二甲醚产品应符合下述质量标准(企业标准)项目 期望值二甲醚 Wt% 93甲醇 Wt% 3水份 Wt% 12.3 产品方案分析及生产规模分析二甲醚是一种用途广泛的化工产品,主要用作冷冻剂、溶剂、萃取剂、气雾剂和燃料等。二甲醚还能代替柴油作汽车燃料,又可作为民用燃料。二甲醚的用途和消费量正在不断扩大,其产品有着良好的市场和发展前景。对于二甲醚而言,基本不存在市场需求问题,关键在于成本的控制。如果以二甲醚的热值和目前广泛使用的液化石油气相比较,二甲醚的成本不能超过3000元。由于二甲醚用耐压罐车或装入钢瓶后运输很安全便捷,因此从成本上考虑,生产企业应该选择在富产煤炭或天然气的地区(甲醇两步法生产则可考虑少些),年产规模至少要在万吨以上,并且尽可能在工艺上实现多联产。天然气和煤炭是规模化生产二甲醚较为经济的原料。本设计可以充分利用河南及周围省份的便利资源并以甲醇为原料发展市场前景广阔的清洁燃料级二甲醚,对发展地区经济及解决能源问题注重环保方面都有着重要的作用且前景广阔。根据消费情况,以及二甲醚技术的研发情况,当前二甲醚作为资源尚处于推广应用阶段,设计定为20万吨/年,随着市场的进一步培育和开拓,届时可再建更大规模的二甲醚装置。本设计采用汽相甲醇脱水法制DME,相对液相法,气相法具有操作简单, 自动化程度较高, 少量废水废气排放, 排放物低于国家规定的排放标准,DME 选择性和产品质量高等优点。同时该法也是目前国内外生产DME的主要方法。53河南城建学院本科毕业设计 工艺流程介绍3 工艺流程介绍3.1 生产方法简述二甲醚的生产方法主要有一步法和二步法两种。一步法以合成气(CO+H2)为原料,在甲醇合成以及甲醇脱水的复合催化剂上直接合成二甲醚,再提纯得到二甲醚产品。二步法是以合成气制得甲醇,然后甲醇在固体催化剂作用下脱水制得二甲醚,所用催化剂选择性高,特别适用于高纯度二甲醚生产。 甲醇脱水制二甲醚二甲醚可由甲醇脱水制得。此工艺在山东临沂新建的30000吨/年二甲醚生产装置上采用。最早采用的脱水剂是浓硫酸,反应在液相中进行。将甲醇和硫酸的混合物加热可得: CO+2H2=CH3OH100时, CH3OH十H2SO4=CH3HSO4+H2O80%)、选择性好(99%)等优点,但也存在设备腐蚀严重、釜残液及废水污染环境、催化剂毒性大、操作条件恶劣等缺点,选择该工艺可能性较小。 合成气直接合成二甲醚传统的DME生产方法,一直采用两个截然不同的步骤。即甲醇的合成与甲醇脱水。为了开发操作简单、成本低而又可连续生产DME的新方法,人们曾用合成气直接制取二甲醚。主要反应构成如下:4H2+2CO=2CH3OH2CH3OH= CH3OCH3+ H2O CO+ H2O=CO2+H23 H2+3CO = CH3OCH3+ CO2该工艺实质上是把合成甲醇及甲醇脱水同步反应合并在一个反应器内,其关键是选择高活性及高选择性的双功能催化剂。一步法又分为二相法和三相法。国外自80年代后对此研究较多,较为典型的是丹麦托普索公司TIGAS工艺、日本三菱重工和COSMO石油公司联合开发的AMSTG工艺;国内大连化物所、华东理工大学、清华大学、山西煤化所等均在研究一步法生产工艺。大连化物所开发的是二相固定床一步合成二甲醚工艺(采用管壳反应器),已完成60吨/年的中试,并已在湖北田力实业公司建有1500吨/年的示范装置(具体运行情况尚需了解)。华东理工大学进行的是气、固、液三相一步法合成工艺研究,已完成小试,未进行中试,现希望与有关单位合作进行中试研究。清华大学进行的是三相淤浆床一步法合成反应器的研究,己完成小试,正筹备中试。南京大学主要研究二甲醚的反应机理,产品主要应用于冶金工业的添加剂、抗氧剂等。3.2 工艺流程说明在20万吨/二甲醚生产装置的工艺设计过程中,综合考虑现有一些二甲醚生产装置在热量平衡上的不足之处,立足于全系统热能的充分利用,以最大限度地达到节能降耗的效果,同时本着节约投资、方便操作与维护的原则对工艺流程进行合理优化,在此基础上设计20万吨/二甲醚生产装置的工艺流程7。 原料甲醇原料直接采用市售质量分数为90%的甲醇经汽化提纯后合成二甲醚。甲醇汽化合成塔(甲醇气相脱水)冷凝、气液分离原料甲醇 气相甲醇 回收塔DME精馏塔 釜残液 釜残液 回收甲醇 产品DME(99.9%)图3.1 二甲醚生产工艺流程方框图 反应在DME合成反应器中产生的反应如下所示:2CH3OH= CH3O CH3+H2O+23.45 kJ/molDME反应器是绝热轴流式固定床反应器。在反应器中约80%的甲醇被转化为二甲醚,而且二甲醚的选择性为约99.9%,二甲醚反应为放热反应。 合成气冷却反应器出口气中含有DME,它在进出气换热器中通过工艺气体冷却,接着在甲醇蒸馏塔底部通过蒸馏塔换热器的工艺液体冷却,然后在二甲醚精馏塔冷却器中用冷却水冷却,最后出口气在冷凝器中大部分冷凝后被送至二甲醚精馏塔。由于二甲醚反应转化率在低压下较高,因此二甲醚反应器的操作压力不宜太高,而二甲醚精馏塔在较高压力操作时DME的损失较小,基于上述原因,二甲醚合成系统压力控制略高于二甲醚精馏系统。 二甲醚精馏来自二甲醚合成系统的工艺液体被送入二甲醚精馏塔中部,塔底再沸是通过精馏塔加热器的蒸汽流量控制完成,在DME精馏塔中DME与甲醇和水分开,一二甲醚产品从精馏塔顶部回收,而甲醇和水一起从塔底去除,并为原料甲醇提供预热热源。含有DME的顶部气体在二甲醚冷凝器中被大部分冷凝下来,然后送入二甲醚塔回流罐中,在二甲醚冷凝器中未冷凝的气相作为燃料被放掉。在二甲醚回流罐中分离的液体被二甲醚回流泵加压,并被分成精馏塔回流液和DME产品,产品二甲醚被送出界区贮存。 甲醇塔二甲醚精馏塔底部液体被直接引入甲醇蒸馏塔中,甲醇在蒸馏塔中与水分离出来,再循环回甲醇缓冲槽内。再沸负荷主要是由合成反应气来提供,不足部分由甲醇塔加热器E108的蒸汽来补充。顶部甲醇蒸汽在甲醇冷凝器(Ell0)的冷却水冷凝,然后通过甲醇回流泵返回二甲醚合成系统,部分甲醇则回流到甲醇蒸馏塔,未冷凝气体则作为尾气放空。常温含水粗甲醇作为本工艺流程的原料,由往复泵定量输送至合成工序的汽化塔进行汽化提纯,并由液态转化成饱和气态,再进入电加热炉过热至250以上温度,过热后的甲醇原料蒸汽以逆流方式进入固定床合成塔,在氧化铝型固定床中进行缩水反应生成气态二甲醚和水(反应温度控制在280-450之间,一次转化率不小于75%),反应产物中包括有二甲醚、水以及未反应的甲醇蒸汽。反应物经换热器降温后在冷凝器中被循环水冷凝成液体,经计量罐进入中间罐贮存,未被冷凝成液态的少量副反应气体如CH4、CO2等则由放空阀排入放空总管并经吸收塔吸收后直接排入大气或送入锅炉房进行焚烧,进入中间罐的反应物由屏蔽泵加压输送至初馏塔进行精馏分离,塔顶分馏出燃料级的二甲醚组分,塔底分离出粗甲醇混合物,燃料级二甲醚蒸汽在甲醚冷凝器中被循环水冷凝成常温二甲醚液体经计量泵后进入燃料级二甲醚产品中间罐,再经加压磁力泵输送至罐区产品贮罐区进行储存,塔底稀甲醇混合物经冷却后进入粗甲醇中间罐进行贮存。粗甲醇中间罐的稀甲醇液体由屏蔽泵加压输送至甲醇回收塔进行精馏分离,塔顶分馏出精甲醇组分,塔底分离出废水,精甲醇蒸汽被循环水冷却成常温精甲醇液体,经计量后进入回收甲醇中间罐。再经计量后由工艺管道输送至往复泵进口循环使用,甲醇回收塔底废水中甲醇含量小于0.025%,经冷却稀释后直接输送锅炉房作为脱硫除尘补充循环水。3.3 生产工艺特点本工艺装置的主要工艺特点是流程简洁明畅,工艺条件温和,装置内热能利用较好,操作简易方便。本装置设备台数较少,设备制作充分立足于国内现状,所有设备均能在国内制造而不需进口,项目投资大为降低。3.4 主要工艺指标3.4.1 二甲醚产品指标表3.1 产品二甲醚产品指标序号组分纯度1234二甲醚甲醇水分C3以下烃类99.9%0.50.30.3 本设计产品二甲醚可用作替代燃料或气雾剂等化工原料,目前燃料级二甲醚尚未颁布国家标准,设计产品工艺指标可参照表(表3.1)。各塔设备指标如下:汽化塔:原料甲醇纯度90%(质量分数,下同),塔顶甲醇气体纯度99%,釜液甲醇含量0.5%; 合成塔:转化率80%,选择性99.9%; 初馏塔:塔顶二甲醚纯度95%,釜液二甲醚含量0.5%; 精馏塔:塔顶二甲醚纯度99.9%,釜液二甲醚含量0.5%; 回收塔:塔顶回收甲醇纯度98%,废水中甲醇含量0.5%。3.4.2 催化剂的使用本设计DME合成塔采用辐射型固定床反应器,生产用催化剂为沸石型酸性氧化铝分子筛。DME合成塔中发生的化学反应为放热反应。所用沸石型酸性氧化铝分子筛为=3mm,L=58 mm白色颗粒状,堆积体积密度0.7t/m3,具有良好的化学性质及足够的撞击强度与耐磨强度,对于甲醇缩水生成二甲醚的工艺过程,该催化剂的催化活性、选择性、与稳定性均显示出了优异的经济指标,在再生与使用周期上也有较好的表现。工艺设计的该催化剂可使甲醇的一次性转化率80%,选择性指标接近100%。极微量副产物为甲烷、二氧化碳。再生周期300日。可反复使用。该型催化剂在制备过程添加少量稀土元素,无有毒重金属组份。因此粉碎或废弃的分子筛可就地填埋或送催化剂配制公司回收处理8。河南城建学院本科毕业设计 主要塔设备计算及选型4主要塔设备计算及选型原料甲醇流量的估算:年产DME20万吨,合成转化率为80%(出去各步损失,按78%粗略估算),选择性按100%计算,二甲醚产品纯度为99.9%。结合甲醇脱水反应式可得下式:kg/kmol4.1 汽化塔及其附属设备的计算选型4.1.1 物料衡算已知F=27.491103kg/h,xF=90%,xD=99%,xW=0.5%(以上均为质量百分数),kg/kmol摩尔分率: 进料平均相对分子质量 M平均=83.50%32.04+16.50%18.02=29.73kg/kmol则进料摩尔流量为:kmol/h总物料 ; 易挥发组分 ; 带入数据解得: D=906.519kmol/h W=160.57kmol/h塔顶产品平均相对分子质量 M=32.0498.24%+18.02(1-98.24%)=31.79kg/kmol塔顶产品质量流
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽皖南医学院第二附属医院招聘28人模拟试卷及完整答案详解1套
- 2025年春季上海华二松江实验教师招聘模拟试卷及答案详解(新)
- 2025年吉安市庐陵产业运营服务有限公司公开招聘物业经理模拟试卷有答案详解
- 2025麻醉药品考试题及答案
- 2025年滁州市扬子工投集团子公司社会招聘2人模拟试卷及参考答案详解一套
- 2025春季建发股份校园招聘模拟试卷及答案详解(必刷)
- 2025甘肃省特种设备检验检测研究院招聘20人考前自测高频考点模拟试题完整参考答案详解
- 2025年河北石家庄协和医学中等专业学校公开招聘教师20名考前自测高频考点模拟试题及答案详解(新)
- 2025江苏泰州市中西医结合医院招聘高层次卫生专业技术人才5人考前自测高频考点模拟试题及答案详解(新)
- 2025广西桂林市资源县中峰镇中心卫生院公开招聘编外专业技术人员2人模拟试卷及答案详解(夺冠系列)
- 架空输电线路线路检测质量缺陷及预控措施
- 人工智能与核医学的深度融合与应用探索
- GB/T 10819-2025木制底盘
- 女生青春期性教育核心知识框架
- 日常膝关节护理
- 船舶消防救生培训课件
- 初中音标考试题及答案大全人教版
- 贵州贵州磷化有限责任公司招聘笔试真题2024
- 新能源汽车火灾事故成因分析及灭火救援措施
- 2024北京陈经纶中学高二10月月考语文试题及答案
- 中兴信息安全管理制度
评论
0/150
提交评论