




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
引 言工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人应用情况,是一个国家工业自动化水平的重要标志。生产中应用机械手可以提高生产的自动化水平,可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用。机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。液压传动机械手是以压缩液体的压力来驱动执行机构运动的机械手。其主要特点是:介质李源极为方便,输出力小,液压动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。第一章机械手的系统工作原理及组成机械手的系统工作原理框图如图1-1所示。 控制系统(PLC)位置检测装置驱动系统(液压传动)执行机构立柱手臂手腕手部 图1-1机械手的系统工作原理框图 机械手的工作原理:机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。在PLC程序控制的条件下,采用液压传动方式,来实现执行机构的相应部位发生规定要求的,有顺序,有运动轨迹,有一定速度和时间的动作。同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。位置检测装置随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置.第二章 机械手的整体设计方案。图2-1机械手的整体机械结构2.1 机械手的座标型式与自由度按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆动的自由度。(如图2-2所示) 图2-2 机械手的运动示意图2.2 机械手的手部结构方案设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。2.3 机械手的手腕结构方案设计考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转液压缸。2.4 机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由液压缸来实现。2.5 机械手的驱动方案设计由于液压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用液压传动方式。2.6 机械手的控制方案设计考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。2.7 机械手的主要技术参数一.机械手的最大抓重是其规格的主参数,由于是采用液压方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为5公斤。二.基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。(如图2-3所示)而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。该机械手最大移动速度设计为。最大回转速度设计为。平均移动速度为。平均回转速度为。机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。在这种情况下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为。手臂升降行程定为。定位精度也是基本参数之一。该机械手的定位精度为。三. 用途:用于自动输送线的上下料。四设计技术参数:1、抓重 2、自由度数 4个自由度3、座标型式 圆柱座标4、最大工作半径 5、手臂最大中心高 6、手臂运动参数 伸缩行程 伸缩速度 升降行程 升降速度 回转范围 回转速度 7、手腕运动参数 回转范围 回转速度8、手指夹持范围 棒料:9、定位方式 行程开关或可调机械挡块等10、定位精度 11、驱动方式 液压传动12、控制方式 点位程序控制(采用PLC)图2-3机械手的工作范围 第三章 手部结构设计3.1 夹持式手部结构夹持式手部结构由手指(或手爪)和传力机构所组成。其传力结构形式比较多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。3.1.1手指的形状和分类夹持式是最常见的一种,其中常用的有两指式、多指式和双手双指式:按手指夹持工件的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。回转型手指开闭角较小,结构简单,制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。3.1.2设计时考虑的几个问题(一)具有足够的握力(即夹紧力)在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。(二)手指间应具有一定的开闭角两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。(三)保证工件准确定位为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。(四)具有足够的强度和刚度手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。(五)考虑被抓取对象的要求根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点, 两指回转型,由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。3.1.3手部夹紧液压缸的设计1、手部驱动力计算本课题液压机械手的手部结构如图3-1所示: 图3-1齿轮齿条式手部其工件重量G=5公斤,V形手指的角度,,摩擦系数为(1)根据手部结构的传动示意图,其驱动力为: (2)根据手指夹持工件的方位,可得握力计算公式:所以(3)实际驱动力: 1、因为传力机构为齿轮齿条传动,故取,并取。若被抓取工件的最大加速度取时,则:所以 所以夹持工件时所需夹紧液压缸的驱动力为。2、液压缸的直径本液压缸属于单向作用液压缸。根据力平衡原理,单向作用液压缸活塞杆上的输出推力必须克服弹簧的反作用力和活塞杆工作时的总阻力,其公式为:式中: - 活塞杆上的推力,N - 弹簧反作用力,N- 液压缸工作时的总阻力,N- 液压缸工作压力,Pa弹簧反作用按下式计算:Gf = 式中:- 弹簧刚度,N/m- 弹簧预压缩量,m- 活塞行程,m- 弹簧钢丝直径,m- 弹簧平均直径,.- 弹簧有效圈数.- 弹簧材料剪切模量,一般取在设计中,必须考虑负载率的影响,则:由以上分析得单向作用液压缸的直径:代入有关数据,可得 所以:查有关手册圆整,得由,可得活塞杆直径:圆整后,取活塞杆直径校核,按公式有:其中,则:满足实际设计要求。3、缸筒壁厚的设计缸筒直接承受压缩空液压力,必须有一定厚度。一般液压缸缸筒壁厚与内径之比小于或等于1/10,其壁厚可按薄壁筒公式计算:式中:6- 缸筒壁厚,mm- 液压缸内径,mm- 实验压力,取, Pa材料为:ZL3,=3MPa代入己知数据,则壁厚为:取,则缸筒外径为:第四章 手腕结构设计4.1 手腕的自由度手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而它具有独立的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与机械手的通用性、加工工艺要求、工件放置方位和定位精度等许多因素有关。由于本机械手抓取的工件是水平放置,同时考虑到通用性,因此给手腕设一绕x轴转动回转运动才可满足工作的要求目前实现手腕回转运动的机构,应用最多的为回转油(气)缸,因此我们选用回转液压缸。它的结构紧凑,但回转角度小于,并且要求严格的密封。4.2 手腕的驱动力矩的计算4.2.1手腕转动时所需的驱动力矩手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动件的中心与转动轴线不重合所产生的偏重力矩.图4-1所示为手腕受力的示意图。 1.工件2.手部3.手腕 图4-1手碗回转时受力状态手腕转动时所需的驱动力矩可按下式计算: 式中: - 驱动手腕转动的驱动力矩();- 惯性力矩();- 参与转动的零部件的重量(包括工件、手部、手腕回转缸的动片)对转动轴线所产生的偏重力矩().- 手腕回转缸的动片与定片、缸径、端盖等处密封装置的摩擦阻力矩();下面以图4-1所示的手腕受力情况,分析各阻力矩的计算:1、手腕加速运动时所产生的惯性力矩M悦若手腕起动过程按等加速运动,手腕转动时的角速度为,起动过程所用的时间为,则: 式中:- 参与手腕转动的部件对转动轴线的转动惯量;- 工件对手腕转动轴线的转动惯量。若工件中心与转动轴线不重合,其转动惯量为:式中: - 工件对过重心轴线的转动惯量:- 工件的重量(N);- 工件的重心到转动轴线的偏心距(cm), - 手腕转动时的角速度(弧度/s);- 起动过程所需的时间(s); 起动过程所转过的角度(弧度)。2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩M偏 + ()式中: - 手腕转动件的重量(N);- 手腕转动件的重心到转动轴线的偏心距(cm)当工件的重心与手腕转动轴线重合时,则.3、手腕转动轴在轴颈处的摩擦阻力矩 ()式中: ,- 转动轴的轴颈直径(cm);- 摩擦系数,对于滚动轴承,对于滑动轴承;,- 处的支承反力(N),可按手腕转动轴的受力分析求解,根据,得:同理,根据(F),得:式中:- 的重量(N), 如图4-1所示的长度尺寸(cm).4、转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置的类型有关,应根据具体情况加以分析。4.2.2回转液压缸的驱动力矩计算在机械手的手腕回转运动中所采用的回转缸是单叶片回转液压缸,它的原理如图4-2所示,定片1与缸体2固连,动片3与回转轴5固连。动片封圈4把气腔分隔成两个.当压缩气体从孔a进入时,推动输出轴作逆时4回转,则低压腔的气从b孔排出。反之,输出轴作顺时针方向回转。单叶液压缸的压力P驱动力矩M的关系为: 或 4.2.3 手腕回转缸的尺寸及其校核1.尺寸设计液压缸长度设计为,液压缸内径为=96mm,半径,轴径=26mm,半径,液压缸运行角速度=,加速度时间=0.1s, 压强, 则力矩: 2.尺寸校核(1)测定参与手腕转动的部件的质量,分析部件的质量分布情况,质量密度等效分布在一个半径的圆盘上,那么转动惯量: ()工件的质量为5,质量分布于长的棒料上,那么转动惯量: 假如工件中心与转动轴线不重合,对于长的棒料来说,最大偏心距,其转动惯量为: (2)手腕转动件和工件的偏重对转动轴线所产生的偏重力矩为M偏,考虑手腕转动件重心与转动轴线重合,夹持工件一端时工件重心偏离转动轴线,则: + (3)手腕转动轴在轴颈处的摩擦阻力矩为,对于滚动轴承,对于滑动轴承=0.1, ,为手腕转动轴的轴颈直径,, , ,为轴颈处的支承反力,粗略估计, 4回转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置的类型有关,应根据具体情况加以分析。在此处估计为的3倍,3 设计尺寸符合使用要求,安全。第五章 手臂伸缩,升降,回转液压缸的尺寸设计与校核5.1 手臂伸缩液压缸的尺寸设计与校核5.1.1 手臂伸缩液压缸的尺寸设计手臂伸缩液压缸采用标准液压缸,参看此公司生产的各种型号的结构特点,尺寸参数,结合本设计的实际要求,液压缸用CTA型液压缸,尺寸系列初选内径为100/63, 5.1.2 尺寸校核1. 在校核尺寸时,只需校核液压缸内径=63mm,半径R=31.5mm的液压缸的尺寸满足使用要求即可,设计使用压强, 则驱动力: 2测定手腕质量为50kg,设计加速度,则惯性力: 3.考虑活塞等的摩擦力,设定摩擦系数, 总受力 所以标准CTA液压缸的尺寸符合实际使用驱动力要求。5.1.3 导向装置液压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时,应该采用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆来增加手臂的刚性和导向性。5.1.4 平衡装置在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性能的影响,故在手臂伸缩液压缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据抓取物体的重量和液压缸的运行参数视具体情况加以调节,务求使两端尽量接近平衡。5.2 手臂升降液压缸的尺寸设计与校核5.2.1 尺寸设计液压缸运行长度设计为=118mm,液压缸内径为=110mm,半径R=55mm,液压缸运行速度,加速度时间=0.1s,压强p=0.4MPa,则驱动力: 5.2.2 尺寸校核1测定手腕质量为80kg,则重力: 2设计加速度,则惯性力: 3.考虑活塞等的摩擦力,设定一摩擦系数, 总受力 所以设计尺寸符合实际使用要求。5.3 手臂回转液压缸的尺寸设计与校核5.3.1 尺寸设计 液压缸长度设计为,液压缸内径为,半径R=105mm,轴径半径,液压缸运行角速度=,加速度时间0.5s,压强, 则力矩: 5.3.2 尺寸校核1测定参与手臂转动的部件的质量,分析部件的质量分布情况,质量密度等效分布在一个半径的圆盘上,那么转动惯量: () 考虑轴承,油封之间的摩擦力,设定一摩擦系数, 总驱动力矩: 设计尺寸满足使用要求。第6章 机械手的PLC控制系统设计6.1 液压机械手的工作流程(如图6-1所示)液压机械手的工作流程如下: (1) 当按下机械手启动按钮之后,首先立柱右转电磁阀通电,机械手右转,至右限位开关动作。(2) 立柱上升电磁阀通电,立柱上升,至上限位开关动作。(3) 手臂伸长电磁阀通电,手臂开始伸长,至限位开关动作。(4) 手腕逆时针转电磁阀通电,手腕逆时针转动,至逆时针转限位开关动作。(5) 立柱下降电磁阀通电,立柱下降,至下限位开关动作。(6) 手爪抓紧电磁阀通电,手爪抓紧,至限位开关动作。(7) 立柱上升电磁阀通电,立柱上升,至上限位开关动作。(8) 手腕逆时针转电磁阀通电,手腕逆时针转动,至逆时针转限位开关动作。(9) 手腕收缩电磁阀通电,手腕收缩,至限位开关动作。(10) 立柱左转电磁阀通电,机械手左转,至左限位开关动作。(11) 手臂伸长电磁阀通电,手臂开始伸长,至限位开关动作。(12) 手腕逆时针转电磁阀通电,手腕逆时针转动,至逆时针转限位开关动作。(13) 立柱下降电磁阀通电,立柱下降,至下限位开关动作。(14) 手爪松开电磁阀通电,手爪松开,至限位开关动作。(15) 手腕收缩电磁阀通电,手腕收缩,至限位开关动作。完成一次循环,然后重复以上循环动作。(16) 按下停止按钮或停电时,机械手停止在现行的工步上,重新启动时,机械手按上一工步继续工作。启动手腕收缩手爪松开立柱右转立柱下降立柱上升手腕逆时针转手臂伸长手臂伸长手腕逆时针转立柱左转立柱下降手腕收缩手爪抓紧手腕逆时针转立柱上升图6-1机械手自动控制工作流程框图 6.2 梯形图设计根据机械手的逻辑时序图及1/0分配,可以画
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计质量提升管理制度
- 诊所义诊项目管理制度
- 诊所日常器械管理制度
- 试验检修设备管理制度
- 财务管理税务管理制度
- 财政往来资金管理制度
- 货场出库日常管理制度
- 货物进出登记管理制度
- 货运码头现场管理制度
- 2025年中国防窥膜行业市场全景分析及前景机遇研判报告
- 苏州市吴江区2021-2022苏教版五年级数学下册期末试卷真题
- 《红楼梦》PPT课件(优秀)
- 新高考英语读后续写——故事编写思路
- “363生态课堂”模式及流程
- (高清版)建筑工程风洞试验方法标准JGJ_T 338-2014
- 钢构车棚施工组织方案
- HP彩色激光打印机节能证书
- 最新烟叶储存保管方法标准
- 《丹江城区普通住宅小区物业服务收费管理办法》
- CYD-128(环氧树脂)MSDS
- 3船舶操作手册
评论
0/150
提交评论