




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 7 两直线的交点坐标 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 两直线的交点坐标 (一)教学目标 1知识与技能 ( 1)直线和直线的交点 . ( 2)二元一次方程组的解 . 2过程和方法 ( 1)学习两直线交点坐标的求法,以及判断两直线位置的方法 . ( 2)掌握数形结合的学习法 . ( 3)组成学习小组,分别对直线和直线的位置进行判断,归纳过定点的直线系方程 . 3情态和价值 ( 1)通过两直线交点和二元一次方程组的联系,从而认识事物之间的内在的联系 . ( 2)能够用辩证的观 点看问题 . (二)教学重点、难点 重点:判断两直线是否相交,求交点坐标 . 难点:两直线相交与二元一次方程的关系 . (三)教学方法:启发引导式 在学生认识直线方程的基础上,启发学生理解两直线交点与2 / 7 二元一次方程组的相互关系 .引导学生将两直线交点的求解问题转化为相应的直线方程构成的二元一次方程组解的问题 .由此体会 “ 形 ” 的问题由 “ 数 ” 的运算来解决 . 教具:用 PoWERPoINT 课件的辅助式数学 . 教学环节教学内容师生互动设计意图 提出问题用大屏幕打出直角坐标系中两直线,移动直线,让学生观察这两直线的 位置关系 .课堂设问一:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?设置情境导入新课 概念形成与深化 1分析任务,分组讨论,判断两直线的位置关系 已知两直线 L1: A1x+B1y+c1=0, L2: A2x+B2y+c2=0 如何判断这两条直线的关系? 教师引导学生先从点与直线的位置关系入手,看表一,并填空 . 几何元素及关系代数表示 点 AA(a, b) 直线 LL: Ax+By+c=0 点 A 在直线上 直线 L1与 L2的交点 A 3 / 7 师:提出问题 生:思考讨论并形成结论 通过学生分组讨论,使学生理解掌握判断两直线位置的方法 . 课后探究:两直线是否相交与其方程组成的方程组的系数有何关系? ( 1)若二元一次方程组有唯一解, L1与 L2相交 . ( 2)若二元一次方程组无解,则 L1与 L2平行 . ( 3)若二元一次方程组有无数解,则 L1 与 L2重合 .课堂设问二:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什么关系? 学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组有何关系? 应用举例 例 1 求下列两直线交点坐标 L1: 3x+4y 2=0 L2: 2x+y+2=0 例 2 判断下列各对直线的位置关系。如果相交,求出交点坐标。 ( 1) L1: x y=0, L2: 3x+3y 10=0 ( 2) L1: 3x y=0, L2: 6x 2y=0 4 / 7 ( 3) L1: 3x+4y 5=0, L2: 6x+8y 10=0. 这道题可以作为练习以巩固判断两直线位置关系 .教师可以让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后才进行讲解 . 同类练习:书本 110页第 1, 2 题 . 例 1 解:解方程组 得 x= 2, y=2. 所以 L1与 L2的交点坐标为 m( 2, 2),如图: 例 2 解:( 1)解方程组 , 得 所以, l1与 l2 相交,交点是 m(). ( 2)解方程组 得 9=0,矛盾, 方程组无解,所以两直线无公共点, l1l2. ( 3)解方程组 2 得 6x+8y 10=0. 因此, 和 可以化成同一个方程,即 和 表示同一条直线, l1与 l2重合 .训练学生解题格式规范条理清楚,表达简5 / 7 洁 . 方 法 探 究 课 堂 设 问 一 . 当 变 化 时 , 方 程3x+4y 2+(2x+y+2)=0 表示何图形,图形有何特点?求出图形的交点的坐标, ( 1)可以用信息技术,当取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点。 ( 2)找出或猜想这个点的坐标,代入方程,得出结论。 ( 3)结论,方程表示经过这两直线 L1 与 L2 的交点的直线的集合。培养学生由特殊到一般的思维方法 . 应用举例例 3 已知 a 为实数,两直线 l1: ax+y+1=0, l2:x+y a=0相交于一点 . 求证交点不可能在第一象限及 x 轴上 . 分析:先通过 联立方程组将交点坐标解出,再判断交点横纵坐标的范围 .例 3 解:解方程组若,则 a 1.当 a 1 时, ,此时交点在第二象限内 . 又因为 a 为任意实数时,都有 a2+11 0,故 . 因为 a1( 否则两直线平行,无交点 ),所以,交点不可能在 x 轴上,得交点() .引导学生将方法拓展与廷伸 归纳总结小结:直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决,并能进行应用 .师生共同总结形成知识体系 6 / 7 课后作业布置作业 见习案第一课时由学生独立完成巩固深化新学知识 备选例题 例 1 求经过点 (2, 3)且经过 l1: x+3y 4=0与 l2: 5x+2y+6=0的交点的直线方程 . 解法 1:联立, 所以 l1, l2的交点为 ( 2,2). 由两点式可得:所求直线方程为即 x 4y+10=0. 解法 2:设所求直线方程为: x+3y 4+(5x+2y+6)=0. 因为点 (2, 3)在直线上,所以 2+33 4+(52+23+6)=0 , 所以,即所求方程为 x+3y 4+()(5x+2y+6)=0, 即为 x 4y+10=0. 例 2 已知直线 l1: x+my+6=0, l2: (m 2)x+3y+2m=0,试求m 为何值 时, l1¬与 l2:( 1)重合;( 2)平行;( 3)垂直;( 4)相交 . 【解析】当 l1l2( 或重合 )时: A1B2 A2B1=13 (m 2)m=0,解得: m=3, m= 1. ( 1)当 m=3时, l1: x+3y+6=0, l2: x+3y+6=0,所以 l1与l2重合; ( 2)当 m= 1 时, l1: x y+6=0, l2: 3x+3y 2=0,所以 l1l2 ; ( 3)当 l1l2 时, A1A2+B1B2=0, m 2+3m=0,即; 7 / 7 ( 4)当 m3 且 m 1 时, l1 与 l2相交 . 例 3 若直 线 l:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肾内科护理查房
- 2025年事业单位工勤技能-湖南-湖南工程测量工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖南-湖南垃圾清扫与处理工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖南-湖南不动产测绘员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北计算机信息处理员三级高级历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北环境监测工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北水利机械运行维护工一级(高级技师)历年参考题库含答案解析
- 2025-2030中国纳米碳酸钙产业竞争风险分析与投资可行性研究报告
- 2025年历史文化街区保护与城市风貌提升研究报告
- 2025年事业单位工勤技能-湖北-湖北下水道养护工二级(技师)历年参考题库含答案解析
- 安徽省A10联盟2024-2025学年高二上学期9月初开学摸底考数学(B卷)试题2
- 干部廉政档案登记表
- 吊篮施工安全技术交底
- 第七单元 专题突破9 聚焦变异热点题型-2025年高中生物大一轮复习
- 2023年海南省社区网格员真题九十天冲刺打卡单选题+多选题+填空题+判断题+客观题A卷
- 《初中数学变式题》课件
- 个人替公司代付协议
- XF-T 3004-2020 汽车加油加气站消防安全管理
- 2.2算法的概念及其描述课件人教中图版高中信息技术必修1
- 出货管理实施手册标准版
- 2000立方米液化石油气球罐设计
评论
0/150
提交评论