




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,ProjectpresentationLinearFactorModelandMoreHongCaiOctober14,2010,2,OUTLINE,IntroductiontoLinearFactorModelsIntroductiontoBARRA-TypeLinearFactorModelsBARRA-TypeChineseEquityLinearFactorModelsBeyondBARRA-TypeLinearFactorModelsSummary,3,IntroductiontoLinearFactorModels,Alinearfactormodel(LFM)isananalyticaldeviceborrowedfromtheworldofstatisticsandemployssingleormultiple,mostlymultiple,factorslinearlyinitscomputationstoexplainmarketphenomenaand/orequilibriumassetprices,especiallyinequitymarket.LFMscanbeusedtoexplaineitheranindividualsecurityoraportfolioofsecuritiesbycomparingthefactorstoanalyzerelationshipsbetweenvariablesandthesecuritysresultingperformance.LFMsarealsousedtoconstructportfolioswithcertaincharacteristics,suchasrisk,ortotrackindexes.Theycanbedividedintothreecategories:macroeconomic,fundamentalandstatisticalmodels.,MajorApplicationofLFMsPredictreturnsofanindividualsecurityoraportfolioofsecurities.Generateestimatesofabnormalreturns(so-calledAlphaModel)Identifyrisksensitivities.Estimatethevariabilityandconvertibilityofreturns(Further,VaRcomputationbyDelta-Normalmethod).Usedinvarioustradingstrategies,likeStat-Arb,Quant/AlgoTrading(suchasmomentum,liquidityandetc).,4,LinearFactorModelSpecification,Thegeneralformofthelinear(multiple)factormodelisRit=i+1if1t+2if2t+KifKt+itwhere:Rit=returnorexcessreturnonasseti(i=1,n)fkt=kthcommonfactor(k=1,K)ki=factorloadingonassetiforkthfactorit=assetspecificfactorforasseti,AssumptionsThefactorrealizations,ft,areI(0)withunconditionalmoments.Theassetspecificerrorterms,it,areuncorrelatedwitheachofthecommonfactors,fkt.Theerrorterms,it,areseriallyuncorrelatedandcontemporaneouslyuncorrelatedacrossassets.,5,ThreeTypesofLinearFactorModels,MacroeconomicfactormodelsUseobservableeconomictimeserieslikeinterestratesandinflationasmeasuresofpervasiveorcommonfactorsinassetreturns.Examples:SharpesSingleIndexModel,CAPM,andAPT.Factorvariables,ft,areobservablebutfactorloadings,i,mustbeestimates.FundamentalfactormodelsUseobservablefirmorassetspecificattributessuchasfirmsize,dividendyield,andindustryclassificationtodeterminecommonfactorsinassetreturns.Examples:Fama-FrenchFactorModelandBARRAFactorModel.InFama-French-TypeFactorModel,firmattributesareusedtocreatefactormimickingportfoliosthatareusedtoproxythefactorvariablesft.Factorloadings,i,mustbeestimated.InBARRA-TypeFactorModel,factorloadings,i,arefirmattributesandobservable.Thefactorvariables,ft,mustbeestimated.StatisticalfactormodelsTreatsthecommonfactorsasunobservableorlatentvariables.Examples:FactorAnalysisandPrincipleComponentAnalysis.Bothfactorvariables,ft,andfactorloadings,imustbeestimated.,6,IntroductiontoBARRAsModels,BARRA,whohaddevelopedBARRAsModels,isaninvestmentconsultingfirmspecializinginquantitativeriskmanagementtools.Thefactorsarethemodelsstatisticallyderivedbuildingblockstocapturethesourcesofequitymarketreturns.TheBARRAUSE3modelemploys67explanatoryfactors.Mostofthemareintuitivealthoughsomenot.Themodelisconsideredlinearbecause,ingeneral,itassumesthatthefactorsinfluencingthemarketworkinalinearfashion.BARRAdoesperformanceanalysisbyfirstestimatingthereturnstoitsfactorsandthenbylinkingthesefactorreturnswitheachmanagersactivepolicies.Eachmonth,BARRArunsabigstatisticalregressionthatsimultaneouslyproducesestimatesofthepriormonthsreturnforeachfactor.Thesefactorreturnscanbeinterpretedas“whileadjustingfortheotherfactorsintheUSE3model,thereturnforfactorXwasY%lastmonth.”Takingthedividendyieldfactorasanexample,onecansaythatnetofthe64otherfactors,thereturnattributabletodividendyieldwas1.2%lastmonth.,Now,BARRAFactorModelswillbethefocusofthepresentationduetotheirimportanceandpopularityinfinancialindustryasafactualstandard.,7,IntroductiontoBARRAsModels,BARRAsmodelisusedtopredictreturnsandriskforequity,fixedincome,cashandderivativeinstruments,atboththeassetandportfoliolevel.,MajorComponentsofBARRAsModelsBarraGlobalEquityModel(GEM2S/L)-Capturestheeffectsofglobalcommonfactors,suchastheworldmarket,styles,countries,industriesandcurrencies,onportfolioreturn.BarraEuropeEquityModel(EUE3)-ProvidesaunifiedperspectiveonriskacrossallmainEuropeanequitymarkets.EUE3capturesthecommoncharacteristicsoftheexpandedEuropeanregion,suchastheEuropemarket,styles,industries,countriesandcurrencies.BarraIntegratedModel-Offersaclearanddetailedviewofyourriskexposuresacrossmarkets,assetclassesandcurrencies.BarraMultiple-HorizonEquityModels-IncorporatedailyreturnsandinvestmenthorizonintotheprovenfactorstructureofBARRAsindustry-leadingriskmodels.BarraSingleCountryEquityModels-Covertheworldsmajorequitymarkets-offeringsourcesofriskandreturnspecifictolocalmarkets.BarraTradingModels-Idealforequitytradersmanagingriskovershorttimehorizons.,8,ProsandConsofBARRAsModels,ProsofBARRAModelsBARRAModelsisthemostcomprehensiveapproachtoequityperformanceanalysisavailable.Thelargenumberoffactorsandthestatisticalrigorofthemodeldodecomposeequityreturnsintomanyinvestmentpolicyvariables.TheseresultsusedinconjunctionwithBARRAsriskmanagementtools,createavaluablefeedbacklooptoaccentuateormitigatepoliciesasappropriate.Theassumptionoflinearityholdsatmostofcasesandmakesthemodelscapabletohandleverycomplexfactorsandassets,andthussignificantlydecreasesthecomputationloadsforportfolioanalysisandriskmanagement.,ConsofBARRAModelsTheassumptionoflinearitybreaksinsomeaccessions,likeunabletocapturetheextremebehaviorofthelargestcapitalizationstocks.UsingBARRAsmodeltocontrolriskstealsthemodelsthunderwhenitcomestoexplainingreturns.Othermethods,likereturns-basedstyleanalysisorpeergrouprankingscouldoffersmorevaluableprescriptiveinterpretation.Itisdifficulttodecidehowmanyandwhichfactorstoinclude.Also,modelswillbejudgedonhistoricalnumbers,whichmightnotaccuratelypredictfuturevalues.BARRAsmodelsassumethatallinvestmentsaremadeonamonthlybuy-and-holdbasis.Forinvestmentmanagerswithsignificantamountsofintra-monthturnover,thelimitationcannoticeablyaffecttheanalysis.,9,BARRA-TypeChineseEquityModel,TobuildBARRA-TypeChineseequitymodelisageneralquestionofmultivariateregressioninfinancialeconometrics.Moststatisticalpackages,suchasSAS,RandS-Plus,couldhandletheregressionprocesses.,KeysinbuildingBARRA-TypeChineseequitymodel:Dataaccuracy,acrucialpieceofriskmodeling,isoneofthecrucialelementsinthesuccessofBARRAsmodels.Thededicatedteamsaggregateandcleanserawdatafromvarioussources,andcreateadatabasewithgreatdepthandaccuracy.InordertomatchthestandardsetbyBARRA,extensiveeffortsmustbeimplementedindatacollectionandprocessing.Morechallengesareindataqualityanddifferentstatisticalmethodology,likemonthlyGDPgrowth,inChina.AlthoughthechoiceofriskfactorswillfollowBARRAUSE3model,significantmodificationsarerequiredduetosomespecialpropertiesofChineseequitymarket,suchasindividual-tradingdominance,hugenon-tradableshareinventory,significantgovernmentguidanceandvolatiletradingbehavior.,10,FurtherImproveChineseEquityModel,DuetothesuccessofBARRAFactorModels,manyfinancialinstitutionshadtriedtobuildtheirownBARRA-TypefactormodeltoimplementtheirproprietaryinsightstothemarketsandovercomesomeshortcomingsoftheBARRAsmodelstoachieveadditionaladvantagescomparedtogeneralusersoftheBARRAsmodels.GoldmanSachshadbuilttheirownBARRA-Typefactormodelbyincludingadditionalriskfactorsandupdatedthenewmodelwithmuchhigherfrequency.Aspecialalgorithmhadbeendevelopedtofastentheregressionprocess.Theimprovementshadbeenpositivelyapprovedinthevarioustradingstrategiesatseveralequitymarketsacrosstheworld.TheresultsofGoldmanSachsclearlydemonstratedthatitisapplicabletobuildanefficientBARRA-Typefactormodelwithreasonableresources,althoughsuchfurtherimprovementsarenotthefirstpriorityinbuildingBARRA-TypeChineseequitymodel.,11,VariousApplicationsBasedonBARRA-TypeLFMs,KeyApplicationsintendedtodevelop:PortfolioManagementPortfolioOptimizationIndexTrackingPerformanceAnalysisALPHAGenerationRiskManagementRiskFactorSensitivityAnalysisRiskNeutralityandMitigationValue-at-RiskComputation,BARRA-Typelinearmultiplefactormodelsarewidelyusedinfinancialindustryandvariousapplicationshavebeendevelopedtotakeadvantageofthepowerofthemodels.Itisinsufficienttoonlydevelopthemodelitself.,12,FullBARRA-TypeLFMDevelopment,OverallDevelopmentMethodology,PreliminaryBARRA-TypeLFMDevelopment,PreliminaryModelValidation,SmallDataSets,APIandGUIDevelopment,DateCollectionandCleanse,Feedbacks,FullModelValidation,ApplicationDevelopment,AutomationandStreamlineProcedures,13,DevelopmentProcedures,DateCollectionandCleanseDedicatedstaffwillbeinchargeofdatecollectionandcleanse.Additionalattentionmushbeenpaidtomanymacroeconomicalindicatorsduetodifferentmethodologyandpoorquality.Inadditiontotheofficialdomesticdata,estimatesfromotherdatasourcesarealsoconsidered.Focusonthedataofthelast10-15years.,PreliminaryBARRA-TypeLFMDevelopmentandValidationThepreliminarymodeldevelopmentishighlyintertwinedwiththestepofdatacollectionandcleanse.Thechoiceofriskfactorswilldecidewhatkindsofdatatobecollected,andthequalityandavailabilityofdataalsoaffectthemodelformation.Asmallsetofstocks(50-100)isselectedwithgoodbalanceintermsofmarketsize,industry,growth/valueandmoreattributes.Thedatabefore2009willbeusedtodecidethemodelstructure,whichwillbejustifiedbythedataafter2009.Inordertofastenthedevelopment,MatlabandstatisticalpackageslikeSASwillused.,14,DevelopmentProcedures,FullBARRA-TypeLFMDevelopmentandValidationMostdataacrossallChinesestockswillbeusedinfullmodeldevelopment.Inadditiontothetraditionalvalidationprocessbyusingthelatestdata,themorestringentandcomprehensivetestshavetobeenpast.Thesetestsaredesignedbymimickingtherealapplicationsofthemodel.Thewholeregressionprocessshouldbeoptimizedin15-20hrs.Ornewtoolsmustbeenintroduced.,AutomationandStreamlineProceduresDatamanagementwillbethecoreofthewholecycle.PythonorPerlwillbeusedtostreamlinethewholeprocessandscheduletheroutinejobs.Newtoolsordevelopmentplatformmightbeintroducedtofastentheregressionanddatamanagement.,15,DevelopmentProcedures,ApplicationDevelopmentApplicationsmustbedesignedontheneedsofclients.Comparedtoweb-basedapplications,astandaloneclient-sidesoftwareminimizesdatacommunicationwiththedataserverandtheleakageofhighlysensitivetradinginformation.Algorithmsmustbeoptimizedtolimitthecomputationtime.,APIandGUIDevelopmentGUIforweb-basedapplicationsandAPIforastandaloneclient-sidesoftware.GUIandAPImustberunatdedicatedservers,whichwillbeupdatedfromthedatabase.,16,ProspectsofComprehensiveFinancialServiceProvider,ChineseMarketOrientedBasedonneedsofChinesefinancialmarketandproductsCompletelylocalizedcustomsupportsFullyintegrateChinesecharacteristicswithstate-of-artofWallStreetCostEfficientSeparatemostofcommonquantitativeresearchandroutinesfromdailyinvestmentdecisionsSavemoneyandtimetobuildacompletesupportingteamLetfundmanagerandriskofficertofocusontheirmainbusinessFastenthep
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年住院医师规培-青海-青海住院医师规培(口腔内科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-贵州-贵州住院医师规培(临床病理科)历年参考题库典型考点含答案解析
- 2025年住院医师规培-湖南-湖南住院医师规培(精神科)历年参考题库含答案解析
- 2025年住院医师规培-湖南-湖南住院医师规培(临床病理科)历年参考题库含答案解析
- 2025年住院医师规培-浙江-浙江住院医师规培(耳鼻咽喉科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-浙江-浙江住院医师规培(儿科)历年参考题库含答案解析
- 2025年住院医师规培-河南-河南住院医师规培(口腔内科)历年参考题库含答案解析(5套)
- 医疗质量控制岗位招聘面试实战模拟题及答案解析
- 2025年住院医师规培-江苏-江苏住院医师规培(胸心外科)历年参考题库典型考点含答案解析
- 2025年住院医师规培-江苏-江苏住院医师规培(中医外科)历年参考题库含答案解析
- 人教版小学英语单词表(完整版)
- 2023年临沧市市级单位遴选(选调)考试真题
- 康复诊疗指南与规范
- 北京客运从业资格证考试
- 初中英语2022版新课程标准测试卷及答案
- 《货物运输实务》课件-铁路货物运输
- JJF(纺织)083-2018织物沾水度仪校准规范
- JJG 861-2007酶标分析仪
- GB/T 12717-2007工业用乙酸酯类试验方法
- 一个华为客户经理回忆录资料讲解
- 中国文学理论批评史全套教学课件
评论
0/150
提交评论