




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.3.2圆锥曲线中的最值、范围、证明问题,考向一,考向二,考向三,(1)求椭圆的方程;(2)直线l与圆O:x2+y2=b2相切于点M,且与椭圆相交于不同的两点A,B,求|AB|的最大值.,圆锥曲线中的最值问题,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,解题心得圆锥曲线中的有关平面几何图形的面积的最值问题,通过某一变量表示出图形的面积的函数表达式,转化为函数的最值问题,然后求导确定函数单调性求最值,或利用基本不等式,或利用式子的几何意义求最值.,考向一,考向二,考向三,对点训练1(1)求直线AP斜率的取值范围;(2)求|PA|PQ|的最大值.,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,圆锥曲线中的范围问题(1)求椭圆E的方程;(2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,解题心得求某一量的取值范围,要看清与这个量有关的条件有几个,有几个条件就可转化为几个关于这个量的不等式,解不等式取交集得结论.,考向一,考向二,考向三,对点训练2(2018山西联考二,理20)已知抛物线E:x2=4y的焦点为F,P(a,0)为x轴上的点.(1)当a0时,过点P作直线l与E相切,求切线l的方程;(2)存在过点P且倾斜角互补的两条直线l1,l2,若l1,l2与E分别交于A,B和C,D四点,且FAB与FCD的面积相等,求实数a的取值范围.,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,解题心得在直线与圆锥曲线的综合问题中,求某个量d的范围,依据已知条件建立关于d的函数表达式,转化为求函数值的范围问题,然后用函数的方法或解不等式的方法求出d的范围.,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,圆锥曲线中的证明问题例4如图,已知椭圆C:,F为椭圆C的右焦点.A(-a,0),|AF|=3.(1)求椭圆C的方程;(2)设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线x=4交于点D,过O且平行于AP的直线与直线x=4交于点E.求证:ODF=OEF.,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,考向一,考向二,考向三,解题心得圆锥曲线中的证明问题涉及证明的范围比较广,但无论证明什么,其常用方法有直接法和转化法,对于转化法,先是对已知条件进行化简,根据化简后的情况,将证明的问题转化为另一问题,如本例中把证明k的范围问题转化为方程的零点k所在的范围问题.,考向一,考向二,考向三,对点训练4(2018全国卷1,理19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京师范大学一带一路学院教学助理招聘模拟试卷参考答案详解
- 2025年河北保定市涞水县公安局公开招聘警务辅助人员30名考前自测高频考点模拟试题及答案详解(各地真题)
- 2025广西桂林城乡建设控股集团有限公司公开招聘5人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025广东广州市黄埔区大沙街姬堂股份经济联合社招聘城市更新(旧村改造)专业人员1人模拟试卷及答案详解(网校专用)
- 2025年福建省泉州文旅集团招聘3人考前自测高频考点模拟试题及完整答案详解一套
- 后勤员工个人工作总结13篇
- 2025昆明市禄劝县人民法院聘用制书记员招录(2人)考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025年延安东辰中学教师招聘模拟试卷及参考答案详解一套
- 2025年安徽理工大学第一附属医院第二批紧缺岗位招聘14人模拟试卷及一套答案详解
- 2025年春季中国邮政储蓄银行黑龙江省分行校园招聘考前自测高频考点模拟试题完整答案详解
- 高中英语完形填空高频词汇300个
- 2023-2025年世纪公园综合养护项目招标文件
- 男朋友男德守则100条
- 食品安全风险管控日管控检查清单
- 乡村振兴汇报模板
- 津16D19 天津市住宅区及住宅建筑内光纤到户通信设施标准设计图集 DBJT29-205-2016
- 医院感染科室院感管理委员会会议记录
- 高分子物理-第2章-聚合物的凝聚态结构课件
- CNAS体系基础知识培训课件
- 三字经全文带拼音打印版带翻译
- 河蟹健康养殖与常见疾病防治技术课件
评论
0/150
提交评论