




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.线段的垂直平分线(2),线段的垂直平分线的性质,定理线段垂直平分线上的点到这条线段两个端点距离相等.,经常用来证明两条线段相等的根据之一.,AC=BC,MNAB,P是MN上任意一点PA=PB,线段的垂直平分线的性质定理的逆定理,逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.,PA=PB点P在AB的垂直平分线上,常用来证明点在直线上(或直线经过某一点)的根据之一.,尺规作图,用尺规作线段的垂直平分线.,也用这种方法作线段的中点.,原理:线段垂直平分线的逆定理。,1.过直线上一点作已知直线的垂线,C,D,E,l,C,D,E,P,过直线外一点作已知直线的垂线,驶向胜利的彼岸,1.已知线段a,求作以a为底,以a/2为高的等腰三角形.这个等腰三角形有什么特征?能作几个?,a,D,C,O,A,B,2、以线段AB为底边的所有等腰三角形的顶点之间有什么关系?,所有等腰三角形的顶点都在线段AB的垂直平分线上。,理由:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.,习题1.4,3.如图,在ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,BCE的周长等于50,求BC的长.,老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.,AD=BD,DEABEA=EB(线段垂直平分线上的点到这条线段两个端点距离相等).,AC=27EA+EC=27EB+EC=27EB+EC+BC=50BC=23,习题1.5,2.如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建造在什么位置?,老师期望:养成用数学解释生活的习惯.,A,B,C,亲历知识的发生和发展,利用尺规作出三角形三条边的垂直平分线.,结论:三角形三条边的垂直平分线相交于一点.,老师期望:你能写出规范的证明过程.,你能证明这个命题吗?,再观察这三条垂直平分线,你又发现了什么?与同伴交流.,A,B,C,P,命题:三角形三条边的垂直平分线相交于一点.,如图,在ABC中,设AB,BC的垂直平分线相交于点P,连接AP,BP,CP.,点P在线段AB的垂直平分线上,PA=PB同理,PB=PC.PA=PC.点P在线段AC的垂直平分线上,AB,BC,AC的垂直平分线相交于一点.,三条直线交于一点,基本想法:两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.,A,B,C,P,定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.,在ABC中,c,a,b分别是AB,BC,AC的垂直平分线(已知),c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).,这是一个证明三条直线交于一点的证明根据.,几何的三种语言,挑战自我,(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作出几个?所作出的三角形都全等吗?,老师期望:你能亲自探索出结果并能用尺规作出图形.,(2)已知等腰三角形的底及底边上的高,你能用尺规作出等腰三角形吗?能作几个?,a,b,梦想成真,1.已知底边及底边上的高,利用尺规作等腰三角形.,已知:线段a,h(如图).,求作:ABC,使AB=AC,且BC=a,高AD=h.,老师期望:你能亲自写出作法.,作法:,驶向胜利的彼岸,习题1.7,驶向胜利的彼岸,1.已知线段a,求作以a为底,以a/2为高的等腰三角形.这个等腰三角形有什么特征?,习题1.7,2.为筹办一个大型运动会,某市政府打算修建一个大型体育中心.在选址过程中,有人建议该体育中心所在位置应当与该城市的三个城镇中心(如图中P,Q,R表示)的距离相等.,(1).根据上述建议,试在图(1)中画出体育中心G的位置;,(2).如果这三个城镇的位置如图(2)所示,RPQ是一个钝角,那么根据上述建议,体育中心G应在什么位置?,(3).你对上述建议有何评论?你对选址有什么建议?,回味无穷,定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.,驶向胜利的彼岸,在ABC中,c,a,b分别是AB,BC,AC的垂直平分线(已知),c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).,习题1.7,2.为筹办一个大型运动会,某市政府打算修建一个大型体育中心.在选址过程中,有人建议该体育中心所在位置应当与该城市的三个城镇中心(如图中P,Q,R表示)的距离相等.,(1).根据上述建议,试在图(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓷砖五一活动宣传方案策划
- 建筑平台景观处理方案设计
- 长沙心理咨询方案
- 湖北水塔滑模施工方案
- 全面预算咨询方案书
- 学校读书角活动方案策划
- 设计咨询利润处理方案
- 五一美容活动促销方案策划
- 建筑方案设计现场勘察报告
- 咨询方案出错
- 储能电站项目进度控制与质量管理方案
- 2025年水发集团有限公司招聘(216人)考试模拟试题及答案解析
- 3.1 生活在新型民主国家(教学课件) 2025-2026学年度道德与法治 九年级上册
- 2025年安徽省政府采购评审专家考试真题库(带答案)
- 急性白血病课件
- 木粉尘防爆安全培训课件
- GB/T 46142-2025智慧城市基础设施智慧交通快速响应矩阵码应用指南
- 场景速写课件讲解
- 2025广东惠州惠城区招聘社区工作站工作人员66人笔试备考题库及答案解析
- 2025年秋二年级上册数学人教版教学计划含教学进度表
- 餐饮四个人合伙合同协议
评论
0/150
提交评论