




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5节椭圆,考试要求1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.,知识梳理,1.椭圆的定义,在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做_.这两定点叫做椭圆的_,两焦点间的距离叫做椭圆的_.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若_,则集合P为椭圆;(2)若_,则集合P为线段;(3)若_,则集合P为空集.,椭圆,焦点,焦距,ac,ac,ac,2.椭圆的标准方程和几何性质,2a,2b,2c,(0,1),a2b2,微点提醒,基础自测,1.判断下列结论正误(在括号内打“”或“”),解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.,答案(1)(2)(3)(4),2.(选修21P49T1改编)若F1(3,0),F2(3,0),点P到F1,F2的距离之和为10,则P点的轨迹方程是_.,解析设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y1,,A.(3,0)B.(0,3)C.(9,0)D.(0,9)解析根据椭圆方程可得焦点在y轴上,且c2a2b225169,c3,故焦点坐标为(0,3).答案B,答案C,A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等,答案D,第1课时椭圆及简单几何性质,考点一椭圆的定义及其应用【例1】(1)如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是(),A.椭圆B.双曲线C.抛物线D.圆,A.24B.12C.8D.6,解析(1)连接QA.由已知得|QA|QP|.所以|QO|QA|QO|QP|OP|r.又因为点A在圆内,所以|OA|OP|,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆.,|PF1|6,|PF2|8,,PF1F2的重心为点G,SPF1F23SGPF1,GPF1的面积为8.答案(1)A(2)C,规律方法(1)椭圆定义的应用主要有:判断平面内动点的轨迹是否为椭圆,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.,答案(1)C(2)5,考点二椭圆的标准方程【例2】(1)已知两圆C1:(x4)2y2169,C2:(x4)2y29,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为(),解析(1)设圆M的半径为r,则|MC1|MC2|(13r)(3r)168|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a16,2c8,,椭圆经过两点(2,0),(0,1),,与ab矛盾,故舍去.,法二设椭圆方程为mx2ny21(m0,n0,mn).椭圆过(2,0)和(0,1)两点,,规律方法根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2ny21(m0,n0,mn),不必考虑焦点位置,用待定系数法求出m,n的值即可.,(2)(2018榆林模拟)已知F1(1,0),F2(1,0)是椭圆C的焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|3,则C的方程为(),解析(1)椭圆长轴长为6,即2a6,得a3,两焦点恰好将长轴三等分,,因此,b2a2c2918,,答案(1)B(2)C,考点三椭圆的几何性质多维探究角度1椭圆的长轴、短轴、焦距,答案A,角度2椭圆的离心率,解析由题意可知椭圆的焦点在x轴上,如图所示,设|F1F2|2c,PF1F2为等腰三角形,且F1F2P120,|PF2|F1F2|2c.,答案D,角度3与椭圆性质有关的最值或范围问题,0m3且m1,则0m1.,综上,m的取值范围是(0,19,).答案A,规律方法1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2a2c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.,【训练3】(1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为(),答案(1)D(2)A,思维升华1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a2,b2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx2ny21(m0,n0且mn),易错防范1.判断两种标准方程的方法为比较标准形式中x2与y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 温州提高建筑质量方案设计
- 咨询目标及咨询方案
- 云浮蒸发式空调施工方案
- 建筑方案设计流程案例范文
- 咨询机构方案模板
- 煤矿彩虹跑活动策划方案
- 芯片行业管理培训课件
- 班主任节启动仪式校长致辞:匠心塑底色微芒竞出色
- 税收法治宣传活动方案策划
- 防水监控施工方案设计
- 2025年防跌倒、坠床安全管理考核试题及答案
- 2025年疫苗上岗证考试题及答案
- 2025中国载人eVTOL行业白皮书
- 2025中国人民抗日战争纪念馆招聘4人考试模拟试题及答案解析
- 2025年老年康复科老年康复护理技能评估试卷答案及解析
- 征地拆迁面试题目及答案
- 果树栽培工专业技能考核试卷及答案
- 航空科普课件
- 2025广西壮族自治区药用植物园招聘高层次人才21人备考试题及答案解析
- 小学语文教师职称考试试题及答案
- 第5章 绩效评价(《绩效管理》第3版)
评论
0/150
提交评论