




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分类讨论思想分类讨论的常见类型(1)由数学概念引起的分类讨论有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等(2)由性质、定理、公式的限制引起的分类讨论有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等(3)由数学运算要求引起的分类讨论如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等(4)由图形的不确定性引起的分类讨论有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等(5)由参数的变化引起的分类讨论某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法(6)由实际意义引起的讨论此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用常见的分类讨论问题有:(1)集合:注意集合中空集的讨论(2)函数:对数函数或指数函数中的底数a,一般应分a1和0a1的讨论;等比数列中分公比q1和q1的讨论(4)三角函数:角的象限及函数值范围的讨论(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论(6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k分存在和不存在,直线截距式中分b0和b0的讨论;轨迹方程中含参数时曲线类型及形状的讨论(8)排列、组合、概率中的分类计数问题(9)去绝对值时的讨论及分段函数的讨论等分类讨论的原则(1)不重不漏(2)标准要统一,层次要分明(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论热点一由数学概念、性质、运算引起的分类讨论例1(1)(2014浙江)设函数f(x)若f(f(a)2,则实数a的取值范围是_解(1)f(x)的图象如图,由图象知,满足f(f(a)2时,得f(a)2,而满足f(a)2时,得a.(2) 在等比数列an中,已知a3,S3,则a1_.解当q1时,a1a2a3,S33a1,显然成立;当q1时,由题意,得所以由,得3,即2q2q10,所以q或q1(舍去)当q时,a16.综上可知,a1或a16.(3)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3 B1或4 C2或3 D2或4解析设6位同学分别用a,b,c,d,e,f表示若任意两位同学之间都进行交换共进行15次交换,现共进行了13次交换,说明有两次交换没有发生,此时可能有两种情况:(1)由3人构成的2次交换,如ab和ac之间的交换没有发生,则收到4份纪念品的有b,c两人(2)由4人构成的2次交换,如ab和ce之间的交换没有发生,则收到4份纪念品的有a,b,c,e四人故选D.思维升华(1)由数学概念引起的讨论要正确理解概念的内涵与外延,合理进行分类;(2)运算引起的分类讨论有很多,如除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等(4)设集合AxR|x24x0,BxR|x22(a1)xa210,aR,若BA,求实数a的值解A0,4,BA,于是可分为以下几种情况(1)当AB时,B0,4,由根与系数的关系,得解得a1.(2)当BA时,又可分为两种情况当B时,即B0或B4,当x0时,有a1;当x4时,有a7或a1.又由4(a1)24(a21)0,解得a1,此时B0满足条件;当B时,4(a1)24(a21)0,解得a2的解集为()A(1,2)(3,) B(,) C(1,2)(,) D(1,2)解要求出满足题意的不等式的解集,需有或分别解这两个不等式组,得1x.(3)已知数列an的前n项和Snpn1(p是常数),则数列an是()A等差数列B等比数列C等差数列或等比数列D以上都不对解Snpn1,a1p1,anSnSn1(p1)pn1(n2),当p1且p0时,an是等比数列;当p1时,an是等差数列;当p0时,a11,an0(n2),此时an既不是等差数列也不是等比数列(4)(2014课标全国)钝角三角形ABC的面积是,AB1,BC,则AC等于()A5 B. C2 D1解析SABCABBCsin B1sin B,sin B,B或.当B时,根据余弦定理有AC2AB2BC22ABBCcos B1225,所以AC,此时ABC为钝角三角形,符合题意;当B时,根据余弦定理有AC2AB2BC22ABBCcos B1221,所以AC1,此时AB2AC2BC2,ABC为直角三角形,不符合题意故AC.(5)(2014广东)设集合A(x1,x2,x3,x4,x5)|xi1,0,1,i1,2,3,4,5,那么集合A中满足条件“1|x1|x2|x3|x4|x5|3”的元素个数为()A60 B90 C120 D130解析在x1,x2,x3,x4,x5这五个数中,因为xi1,0,1,i1,2,3,4,5,所以满足条件1|x1|x2|x3|x4|x5|3的可能情况有“一个1(或1),四个0,有C2种;两个1(或1),三个0,有C2种;一个1,一个1,三个0,有A种;两个1(或1),一个1(或1),两个0,有CC2种;三个1(或1),两个0,有C2种故共有C2C2ACC2C2130(种),故选D.(6)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_(用数字作答)解析分三类:选1名骨科医生,则有C(CCCCCC)360(种)选2名骨科医生,则有C(CCCC)210(种);选3名骨科医生,则有CCC20(种)所以,骨科、脑外科和内科医生都至少有1人的选派方法种数是36021020590.热点二由图形位置或形状引起的讨论例2(1)抛物线y24px (p0)的焦点为F,P为其上的一点,O为坐标原点,若OPF为等腰三角形,则这样的点P的个数为()A2 B3 C4 D6解当|PO|PF|时,点P在线段OF的中垂线上,此时,点P的位置有两个;当|OP|OF|时,点P的位置也有两个;对|FO|FP|的情形,点P不存在事实上,F(p,0),若设P(x,y),则|FO|p,|FP|,若p,则有x22pxy20,又y24px,x22px0,解得x0或x2p,当x0时,不构成三角形当x2p(p0)时,与点P在抛物线上矛盾所以符合要求的点P一共有4个(2)设圆锥曲线T的两个焦点分别为F1,F2,若曲线T上存在点P满足|PF1|F1F2|PF2|432,则曲线T的离心率为_解 不妨设|PF1|4t,|F1F2|3t,|PF2|2t,若该圆锥曲线为椭圆,则有|PF1|PF2|6t2a,|F1F2|3t2c,e;若该圆锥曲线是双曲线,则有|PF1|PF2|2t2a,|F1F2|3t2c,e.所以圆锥曲线T的离心率为或.思维升华求解有关几何问题时,由于几何元素的形状、位置变化的不确定性,所以需要根据图形的特征进行分类讨论一般由图形的位置或形状变化引发的讨论包括:二次函数对称轴位置的变化;函数问题中区间的变化;函数图象形状的变化;直线由斜率引起的位置变化;圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化(1)已知变量x,y满足的不等式组表示的是一个直角三角形围成的平面区域,则实数k等于()A B. C0 D或0解 不等式组表示的平面区域是直角三角形,只有直线ykx1与直线x0垂直(如图)或直线ykx1与直线y2x垂直(如图)时,平面区域才是直角三角形由图形可知斜率k的值为0或.(2)设F1,F2为椭圆1的两个焦点,P为椭圆上一点已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|PF2|,则的值为_解 若PF2F190,则|PF1|2|PF2|2|F1F2|2,|PF1|PF2|6,|F1F2|2,解得|PF1|,|PF2|,.若F2PF190,则|F1F2|2|PF1|2|PF2|2|PF1|2(6|PF1|)2,解得|PF1|4,|PF2|2,2.综上所述,2或.热点三由参数引起的分类讨论例3(1)(2014四川改编)已知函数f(x)exax2bx1,其中a,bR,e2.718 28为自然对数的底数设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值解由f(x)exax2bx1,有g(x)f(x)ex2axb.所以g(x)ex2a.因此,当x0,1时,g(x)12a,e2a当a时,g(x)0,所以g(x)在0,1上单调递增,则g(x)在0,1上的最小值g(0)1b;当a时,g(x)0,所以g(x)在0,1上单调递减,则g(x)在0,1上的最小值g(1)e2ab;当a时,令g(x)0得xln(2a)(0,1),所以函数g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增于是,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b.综上所述,当a时,g(x)在0,1上的最小值是g(0)1b;当a0,故f(x)在(0,)上单调递增当a1时,f(x)0,故f(x)在(0,)上单调递减当1a0;当x时,f(x)0.故f(x)在上单调递增,在上单调递减综上,当a0时,f(x)在(0,)上单调递增;当a1时,f(x)在(0,)上单调递减;当1a0即x(0,1时,f(x)ax33x10可化为a.设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4;当x0,g(x)在区间1,0)上单调递增,因此g(x)ming(1)4,从而a4,综上a4.思维升华一般地,遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响进行分类讨论,此种题目为含参型,应全面分析参数变化引起结论的变化情况,参数有几何意义时还要考虑适当地运用数形结合思想,分类要做到分类标准明确,不重不漏(1)已知函数f(x)为R上的单调函数,则实数a的取值范围是()A(0,) B2,0) C1,0) D1,)解析若a0,则f(x)在定义域的两个区间内都是常函数,不具备单调性;若a0,函数f(x)在两段上都是单调递增的,要使函数在R上单调递增,只要(a2)e01,即a1,与a0矛盾,此时无解若2a0,则函数在定义域的两段上都是单调递减的要使函数在R上单调递减,只要a21即a1,即1a0.当a2时,函数f(x)不可能在R上单调.综上,a的取值范围是1,0)(2)(2013安徽)“a0”是“函数f(x)|(ax1)x|在区间(0,)内单调递增”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件解析当a0时,f(x)|(ax1)x|x|在区间(0,)上单调递增;当a0时,结合函数f(x)|(ax1)x|ax2x|的图象知函数在(0,)上先增后减再增,不符合条件,如图(2)所示所以,要使函数f(x)|(ax1)x|在(0,)上单调递增只需a0.即“a0”是“函数f(x)|(ax1)x|在区间(0,)内单调递增”的充要条件(3)已知函数g(x)(aR),f(x)ln(x1)g(x)(1)若函数g(x)过点(1,1),求函数f(x)的图象在x0处的切线方程;(2)判断函数f(x)的单调性解(1)因为函数g(x)过点(1,1),所以1,解得a2,所以f(x)ln(x1).由f(x),则f(0)3,所以所求的切线的斜率为3.又f(0)0,所以切点为(0,0),故所求的切线方程为y3x.(2)因为f(x)ln(x1)(x1),所以f(x).当a0时,因为x1,所以f(x)0,故f(x)在(1,)上单调递增当a0时,由得1x1a,故f(x)在(1a,)上单调递增综上,当a0时,函数f(x)在(1,)上单调递增;当a0)若a0,则f(x)0,f(x)有单调递增区间0,)若a0,令f(x)0,得x,当0x时,f(x)时,f(x)0.f(x)有单调递减区间0,有单调递增区间(,)(2)由(1)知,若a0,f(x)在0,2上单调递增,所以g(a)f(0)0.若0a6,f(x)在0,上单调递减,在(,2上单调递增,所以g(a)f().若a6,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025房地产项目认筹合作开发与分成协议
- 2025标准托盘租赁与智能化调度服务合同
- 2025版私人餐厅连锁经营区域代理承包合同
- 2025年不良资产投资分析与风险评估服务合同范本
- 2025年新型防雷设施维护与保养服务合同
- 贵州省剑河县2025年上半年事业单位公开遴选试题含答案分析
- 2025版水电工程水电材料采购与运输服务合同范本
- 2025版汽车油箱配件供应协议
- 2025版创新科技行业员工劳动合同模板
- 2025版连锁便利店店铺承包合作协议书
- 美术馆智能化建设技术方案
- 老年大学京剧青衣课程教学大纲
- 2025年综合窗口岗位工作人员招聘考试笔试试题(附答案)
- 南昌航空笔试题库及答案
- 医保违规处理制度3
- 中学化学课程中整合地域文化特色的教学实践
- 2025年闸门运行工(高级)职业技能考试题及答案
- 高二年级培优措施及策略
- 2025年中国人寿:养老险上海分公司招聘笔试参考题库含答案解析
- 2025至2031年中国特种工业气体行业投资前景及策略咨询研究报告
- 2025年福建中闽海上风电有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论