



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。一、求线性目标函数的取值范围例1、 若x、y满足约束条件,则z=x+2y的取值范围是()xyO22x=2y =2x + y =2BAA、2,6B、2,5C、3,6D、(3,5解:如图,作出可行域,作直线l:x+2y0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积2x + y 6= 0 = 5xy 3 = 0OyxABCMy =2例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|y|2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个xyO解:|x|y|2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围x + y = 5x y + 5 = 0Oyxx=3例4、已知x、y满足以下约束条件,使z=x+ay(a0)取得最小值的最优解有无数个,则a的值为()A、3B、3C、1D、1解:如图,作出可行域,作直线l:x+ay0,要使目标函数z=x+ay(a0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()2x + y - 2= 0 = 5x 2y + 4 = 03x y 3 = 0OyxAA、13,1 B、13,2C、13, D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2xy2=0的距离的平方,即为,选C六比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。例 已知变量x,y满足约束条件则 的取值范围是( ).(A),6 (B)(,6,)(C)(,36,) (D)3,6解析 是可行域内的点M(x,y)与原点O(0,0)连线的斜率,当直线OM过点(,)时,取得最小值;当直线OM过点(1,6)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建莆田市数字集团有限公司公开选聘11名专业人才模拟试卷含答案详解
- 2025湖北十堰市郧阳区聘请政务服务志愿监督员10人模拟试卷及一套完整答案详解
- 2025年河南省社会科学院招聘高层次人才模拟试卷及答案详解(网校专用)
- 2025广西梧州市公安局第二批招聘警务辅助人员160人模拟试卷及答案详解一套
- 2025年4月杭州市采荷中学编外教师招聘3人模拟试卷及完整答案详解
- 2025黑龙江哈尔滨地铁集团招聘81人模拟试卷附答案详解(黄金题型)
- 2025黑龙江富裕县龙安桥镇人民政府招聘公益性岗位人员1人模拟试卷附答案详解(模拟题)
- 2025安徽合肥瑶海区某物业集团公司对外招聘95人笔试题库历年考点版附带答案详解
- 2025吉林农业大学招聘博士及急需紧缺人才80人(1号)模拟试卷及参考答案详解1套
- 2025年佳木斯市汤原县乡镇卫生院公开招聘医学毕业生1人考前自测高频考点模拟试题完整参考答案详解
- 2024年江苏省射阳县事业单位招聘35人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 标签打印机的快速批量打印方法
- GB/T 1504-2024铸铁轧辊
- 食品行业创新与研发
- 电力各种材料重量表总
- 樊荣-《医疗质量管理办法》核心制度要点解析与案
- 男性不育症诊治指南课件
- 《声声慢》省赛一等奖
- 消防安全教育培训记录表
- 国家开放大学《实用管理基础》形考任务1-4参考答案
- 2023混凝土结构耐久性电化学修复技术规程
评论
0/150
提交评论