浙江专用2018-2019学年高中物理第七章机械能守恒定律微型专题利用动能定理分析变力做功和多过程问题课件新人教版必修2 .ppt_第1页
浙江专用2018-2019学年高中物理第七章机械能守恒定律微型专题利用动能定理分析变力做功和多过程问题课件新人教版必修2 .ppt_第2页
浙江专用2018-2019学年高中物理第七章机械能守恒定律微型专题利用动能定理分析变力做功和多过程问题课件新人教版必修2 .ppt_第3页
浙江专用2018-2019学年高中物理第七章机械能守恒定律微型专题利用动能定理分析变力做功和多过程问题课件新人教版必修2 .ppt_第4页
浙江专用2018-2019学年高中物理第七章机械能守恒定律微型专题利用动能定理分析变力做功和多过程问题课件新人教版必修2 .ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微型专题利用动能定理分析变力做功和多过程问题,第七章机械能守恒定律,内容索引,重点探究启迪思维探究重点,达标检测检测评价达标过关,重点探究,1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W变W其他Ek.,一、利用动能定理求变力的功,例1(2018杭西高高一4月测试)如图1所示,竖直平面内的轨道由直轨道AB和圆弧轨道BC组成,小球从斜面上A点由静止开始滑下,滑到斜面底端后又滑上半径为R0.4m的圆弧轨道.(g10m/s2),答案,解析,图1,(1)若接触面均光滑,小球刚好能滑到圆弧轨道的最高点C,求斜面高h;,答案见解析,解析小球刚好到达C点,重力提供向心力,由牛顿第二定律得:mgm,,解得:h2.5R2.50.4m1m;,(2)若已知小球质量m0.1kg,斜面高h2m,小球运动到C点时对轨道的压力为mg,求全过程中摩擦阻力做的功.,答案,解析,答案见解析,解析在C点,由牛顿第二定律得:,从A到C过程,由动能定理得:,解得:Wf0.8J.,图1,从B至C小球所受的摩擦力是变力(大小、方向都变),求变力的功不能直接应用功的公式,通常用动能定理求解.,针对训练1(2018余姚市高一下学期期中考试)如图2所示,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为,答案,解析,图2,解析质点经过Q点时,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得FNmgm,由题有FN2mg,可得vQ,质点自P滑到Q的过程中,由动能定理得mgRWfmvQ2,得克服摩擦力所做的功为mgR,选项C正确.,一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.,二、利用动能定理分析多过程问题,(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.,例2如图3所示,右端连有一个光滑弧形槽的水平桌面AB长L1.5m,一个质量为m0.5kg的木块在F1.5N的水平拉力作用下,从桌面上的A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数0.2,取g10m/s2.求:,答案,解析,图3,(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽);,答案0.15m,解析设木块沿弧形槽上升的最大高度为h,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升到最大高度处,由动能定理得:FLFfLmgh0其中FfFNmg0.20.510N1.0N,(2)木块沿弧形槽滑回B端后,在水平桌面上滑行的最大距离.,答案,解析,答案0.75m,图3,解析设木块离开B点后沿桌面滑行的最大距离为x.由动能定理得:mghFfx0Ffmg,解析以A为研究对象,设其受到杆的拉力为F,,代入数据v11m/s,可得,即A受到杆的支持力为16N.根据牛顿第三定律可得A对杆的作用力为压力,大小为16N.,针对训练2如图4所示,质量m1kg的木块静止在高h1.2m的平台上,木块与平台间的动摩擦因数0.2,用水平推力F20N,使木块产生位移l13m时撤去,木块又滑行l21m后飞出平台,求木块落地时速度的大小.(g取10m/s2),答案,解析,图4,答案11.3m/s,解析解法一取木块为研究对象,其运动分三个过程,先匀加速前进l1,后匀减速前进l2,再做平抛运动,对每一过程,分别由动能定理得,解得v311.3m/s解法二对全过程由动能定理得,代入数据解得v11.3m/s,动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为vmin0.没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为vmin.,三、动能定理在平抛、圆周运动中的应用,例3(2018金华市十校联考)如图5所示,质量m0.2kg的小物块,放在半径R12m的水平圆盘边缘A处,小物块与圆盘间的动摩擦因数10.8.圆心角为37、半径R22.5m的光滑圆弧轨道BC与水平轨道光滑连接于C点,小物块与水平轨道间的动摩擦因数为20.5.开始圆盘静止,在电动机的带动下绕过圆心O1的竖直轴缓慢加速转动,某时刻小物块沿纸面水平方向飞出(此时O1与A连线垂直纸面),恰好沿切线进入圆弧轨道B处,经过圆弧BC进入水平轨道CD,在D处进入圆心为O2、半径R30.5m的光滑竖直圆轨道,绕过圆轨道后沿水平轨道DF向右运动.设最大静摩擦力等于滑动摩擦力,不计空气阻力,sin370.6,cos370.8,g取10m/s2,求:,图5,(1)圆盘对小物块m做的功;,答案1.6J,解析小物块刚滑出圆盘时:,答案,解析,得:vA4m/s,得:W1.6J,图5,(2)小物块刚离开圆盘时A、B两点间的水平距离;,答案1.2m,解析物块正好切入圆弧轨道BC,由平抛运动知识可得:,答案,解析,在B处物块的竖直分速度为vByvAtan37,A、B间的水平距离xvAt联立解得:x1.2m,图5,(3)假设竖直圆轨道可以左右移动,要使小物块能够通过竖直圆轨道,求竖直圆轨道底端D与圆弧轨道底端C之间的距离范围和小物块的最终位置.,答案lDC1m最后停在离C位置右侧3.5m处,答案,解析,由B到E点由动能定理得:mgR2(1cos37)2mgL2mgR3,可得:L1m即DC之间距离不大于1m时物块可通过竖直圆轨道.最后物块必定停止,由动能定理可得:,解得x3.5m即最后物块停在离C位置右侧3.5m处.,例4(2018湖州、衢州、丽水高三期末联考)某游乐场的滑梯可以简化为如图6所示竖直面内的ABCD轨道,AB为长L6m、倾角37的斜轨道,BC为水平轨道,CD为半径R15m、圆心角37的圆弧轨道,轨道AB段粗糙,其余各段均光滑.一小孩(可视为质点)从A点以初速度v02m/s沿轨道下滑,运动到D点时的速度恰好为零(不计经过B点时的能量损失).已知该小孩的质量m30kg,取sin370.6,cos370.8,g10m/s2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:,四、动能定理在多过程往复运动中的应用,图6,(1)该小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力;,答案,解析,图6,答案420N,方向竖直向下,解析由C到D速度减为0,由动能定理可得,在C点,由牛顿第二定律得,根据牛顿第三定律,小孩对轨道的压力为420N,方向竖直向下,(2)该小孩与AB段的动摩擦因数;,答案,解析,图6,答案0.25,解析小孩从A运动到D的过程中,由动能定理得:,可得:0.25,(3)该小孩在轨道AB上运动的总路程s.,答案,解析,图6,答案21m,解析在AB斜轨上,mgcosmgsin,小孩不能静止在斜轨上,则小孩从A点以初速度v0滑下,最后静止在BC轨道B处.,解得s21m.,1.在含有摩擦力的多过程往复运动过程中,注意两种力做功的区别:(1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功WFfs(s为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.,达标检测,1,2,3,1.(用动能定理求变力的功)如图7所示,质量为m的物体与水平转台间的动摩擦因数为,物体与转轴相距R,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是,答案,解析,图7,解析物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v,则有mg.,在物体由静止到获得速度v的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:Wmv20.,1,2,3,2.(动能定理在平抛、圆周运动中的应用)如图8所示,一可以看成质点的质量为m2kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角53,轨道半径R0.5m.已知sin530.8,cos530.6,不计空气阻力,g取10m/s2.,图8,1,2,3,(1)求小球的初速度v0的大小;,图8,答案3m/s,解析在A点由平抛运动规律得:,小球由桌面到A点的过程中,由动能定理得,由得:v03m/s.,答案,解析,1,2,3,(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.,图8,答案4J,答案,解析,解析在最高点C处有mg,小球从桌面到C点,由动能定理得WfmvC2mv02,代入数据解得Wf4J.,1,2,3,3.(利用动能定理分析多过程及往复运动问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图9是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m.某运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧形轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为60kg,B、E两点到水平轨道CD的竖直高度分别为h和H,且h2m,H2.8m,g取10m/s2.求:,1,2,3,答案,解析,图9,(1)运动员从A点运动到达B点时的速度大小vB;,答案6m/s,解得:vB6m/s.,1,2,3,答案,解析,图9,(2)滑板与轨道CD段间的动摩擦因数;,答案0.125,解析从B点到E点,由动能定理可得:,代入数据可得:0.125.,1,2,3,(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论