2019届高考数学二轮复习第一篇专题七概率与统计第2讲统计案例课件文.ppt_第1页
2019届高考数学二轮复习第一篇专题七概率与统计第2讲统计案例课件文.ppt_第2页
2019届高考数学二轮复习第一篇专题七概率与统计第2讲统计案例课件文.ppt_第3页
2019届高考数学二轮复习第一篇专题七概率与统计第2讲统计案例课件文.ppt_第4页
2019届高考数学二轮复习第一篇专题七概率与统计第2讲统计案例课件文.ppt_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲统计案例,高考导航,热点突破,备选例题,阅卷评析,真题体验,高考导航演真题明备考,1.(2018全国卷,文18)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.,(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;,(2)你认为用哪个模型得到的预测值更可靠?并说明理由.,(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型得到的预测值226.1亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠.,2.(2017全国卷,文19)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:,(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;,解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)5=0.62.因此,事件A的概率估计值为0.62.,(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;,解:(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50kg到55kg之间,旧养殖法的箱产量平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.,3.(2016全国卷,文18)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码17分别对应年份20082014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;,4.(2015全国卷,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.,考情分析,1.考查角度常以贴近考生、贴近生活的实际问题为背景,以统计图、表为依据,考查独立性检验、线性回归方程并由回归方程估计预测,有时还需将非线性回归模型转化为线性回归模型解决.,2.题型及难易度解答题,难度中低档.,热点突破剖典例促迁移,热点一,线性回归分析,考向1线性回归方程,【例1】(2018湖南省湘东五校联考)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1月份至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据:,该兴趣小组确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;,考向2相关系数,【例2】(2018广州市调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该基地周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y(单位:千克)与使用某种液体肥料的质量x(单位:千克)之间的对应数据如图所示.,(1)依据图中数据计算相关系数r(精确到0.01),并据此判断是否可用线性回归模型拟合y与x的关系.(若|r|0.75,则线性相关程度很高,可用线性回归模型拟合),方法技巧,(2)利用回归直线方程进行预测估计时,代入相应的数值后求得的结果是估计值,并非准确值.,热点训练1:(2018广西三市第二次调研)某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕.为了更好地了解本地区某一特色产品的宣传费x(千元)对销量y(千件)的影响,统计了近六年的数据如下:(1)若近6年的宣传费x与销量y呈线性分布,由前5年数据求线性回归直线方程,并写出y的预测值;,热点二,独立性检验,【例3】(2018江西九校联考)进入高三,同学们的学习越来越紧张,学生休息和锻炼的时间也减少了.学校为了提高学生的学习效率,鼓励学生加强体育锻炼.某中学高三(3)班有学生50人.现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图.其中数据的分组区间为:0,2,(2,4,(4,6,(6,8,(8,10,(10,12.,(1)求学生周平均体育锻炼时间的中位数(保留3位有效数字);,(2)从每周平均体育锻炼时间在0,4的学生中,随机抽取2人进行调查,求此2人的每周平均体育锻炼时间都超过2小时的概率;,方法技巧,解独立性检验问题的步骤:(1)根据样本数据列22列联表;(3)比较K2与临界值的大小关系作出判断.,热点训练2:(2018南昌市摸底)微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK或点赞.现从小明的微信好友中随机选取了40人(男、女各20人),记录了他们某一天行走的步数,并将数据整理如表:若某人一天行走的步数超过8000,则其被评定为“积极型”,否则被评定为“懈怠型”.,(1)利用样本估计总体的思想,试估计小明的微信好友每日行走的步数超过10000的概率;,热点三,可线性化的非线性回归分析,【例4】某品牌汽车旗下的4S店以“四位一体”(整车销售、零配件销售、售后服务、信息反馈)为核心的模式经营,4S店为了了解该品牌的A,B,C三种车型的质量问题,从出售时间5年以上的该三种车型的汽车中各随机抽取100辆进行跟踪调查,发现各车型在一年内需要维修的车辆如表(1)所示.(1)该4S店从所有的跟踪服务的A,B,C三种车型的汽车中用分层抽样的方法抽取10个样本做进一步调查,求分别抽取的A,B,C三种车型的汽车辆数;,(2)该品牌汽车研发中心针对A,B,C三种车型在维修中反映的主要问题研发了一种辅助产品,4S店需要对研发中心研发的辅助产品进行合理定价,该产品在试营时的数据如散点图和表(2)所示.根据散点图判断,y与x和z与x哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?并根据你的判断结果及数据,求y关于x的回归方程(方程中的系数均保留两位小数).,方法技巧,解非线性回归分析问题,首先观察散点图,挑出与散点图拟合得最好的函数,然后采用适当的变量置换把问题转化为线性回归分析问题.,热点训练3:(2018广州综合测试)某地110岁男童年龄xi(单位:岁)与身高的中位数yi(单位:cm)(i=1,2,10)如表:对上表的数据作初步处理,得到下面的散点图及一些统计量的值.,备选例题挖内涵寻思路,【例1】(2018山西八校联考)某网店与某生产企业联合研发了一种新产品,该产品在该网店试销一个阶段后得到销售单价x(单位:元)和销售量y(单位:万件)之间的一组数据,如表所示:(1)根据表中数据,建立y关于x的回归方程;,【例2】(2018济南市模拟)2018年2月22日上午,山东省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在20,40)内的产品视为合格品,否则为不合格品.设备改造前的样本的频率分布直方图和设备改造后的样本的频率分布表如下所示.,设备改造后样本的频率分布表(1)完成下面的22列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;,(2)根据上述数据,试从产品合格率的角度对改造前后设备的优劣进行比较;,解:(3)用频率估计概率,1000件产品中大约有960件合格品,40件不合格品,则180960-10040=168800,所以该企业大约获利168800元.,【例3】(2017黑龙江齐齐哈尔二模)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据制成如下频率分布直方图:,(1)试根据频率分布直方图估计小区平均每户居民的平均损失;(同一组中的数据用该组区间的中点值作代表);,(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过6000元的居民中随机抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;,阅卷评析抓关键练规范,【典例】(2018全国卷,文18)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图,(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;,评分细则:解:(1)第二种生产方式的效率更高.1分理由如下(写出一种,合理即可):由茎叶图可知,用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.由茎叶图可知,用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.,由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.4分(由上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.),(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:,注:第(1)问得分说明:判断出效率更高的生产方式,得1分;根据茎叶图中的数据分布,分析出效率更高,生产方式的任意一种合理理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论